

Consulting Engineers and Scientists

Hydrogeological Investigation Proposed Commercial Warehouse Development

6728 Sixth Line, Milton, Ontario

Submitted to:

Anatolia Investments Corporation 8300 Huntington Road Vaughan, Ontario, L4H 4Z6

Submitted by:

GEI Consultants Ltd. 647 Welham Road, Unit 14 Barrie, Ontario, L4N 0B7 www.canada.geiconsultants.com

Project No. 2300805

Issues and Revisions Registry

Identification	Date	Description of Issued and/or Revision
1st Submission	July 19, 2023	Hydrogeological Investigation
2nd Submission	October 2 2023 I preliminary high groundwater level measur	
3rd Submission	January 17, 2024	Revised Hydrogeological Investigation to include preliminary high groundwater level measurements to date

Table of Contents

1.	Intro	duction4
	1.1	Purpose and Scope of Work
	1.2	Regulatory Requirements
2.	Back	ground Review8
	2.1	ground Review
	2.2	Review of MECP Water Well Records and Existing Water Wells
	2.3	Review of PTTW Records and EASRs 10
	2.4	Site Condition Standards11
	2.5	Visual Inspection of the Site11
3.	Proc	edures and Methodology12
	3.1	Borehole Drilling and Monitoring Well Installation
	3.2	Hydraulic Conductivity Testing
	3.3	Groundwater Sampling
4.	Subs	urface Conditions15
	4.1	Stratigraphy15
	4.2	Groundwater Conditions
	4.3	Hydraulic Conductivity
	4.4	Hydrostratigraphy 19
	4.5	Groundwater Quality
5.	Discu	ussion and Analysis22
	5.1	Preliminary Construction Dewatering
	5.2	Preliminary Water Balance
6.	Limit	ations
7.	Clos	ure33
8.	Refe	rences

Table of Contents (Continued)

Figures

- 1. Site Location Plan
- 2. Borehole/Monitoring Well Location Plans (a: Aerial, b: Site Plan)
- 3. Well Head Protection Areas
- 4. Intake Protection Zones
- 5. Highly Vulnerable Aquifers
- 6. Significant Groundwater Recharge Areas
- 7. Issue Contributing Areas
- 8. MECP Water Well Records
- 9. Geological Cross Sections A-A'
- 10. Geological Cross Sections B-B'
- 11. Groundwater Contour Map

Appendices

- A. MECP Water Well Records
- B. Borehole Logs
- C. Geotechnical Laboratory Testing
- D. Borehole Permeability Plots
- E. Water Quality Laboratory Certificate of Analysis and Chain of Custody
- F. Construction Dewatering Calculations
- G. Groundwater Taking Plan
- H. Discharge Plan
- I. Preliminary Water Balance
- J. Long Term Groundwater Level Monitoring (to date)

1. Introduction

GEI Consultants Ltd. (GEI) was retained by the Anatolia Investments Corporation to complete a subsurface investigation and provide a hydrogeological report in support of the proposed development of 6728 Sixth Line in the Town of Milton, Ontario for commercial warehousing. A site location plan is shown in Figure 1.

The site comprises the land in the southwest quadrant of the Derry Road West and Sixth Line intersection and is approximately 625 m north-to-south and 1,000 m east-to-west. Until recently, 6728 Sixth Line was the location of the former Trafalgar Golf and Country Club with predominantly landscaped golf course areas across the site. It is understood that some of the structures have been demolished in preparation for the redevelopment.

It is understood that three commercial buildings are proposed, and a grade raise is proposed for most of the site. Building 1 will be about 240 m by 450 m in plan (proposed slab Elev. 191.90), Building 2 will be about 180 m by 330 m in plan (proposed slab Elev. 192.10) and Building 3 will be approximately 85 m by 225 m in plan (proposed slab Elev. 191.05). All three buildings will be slab-on-grade and will have some form of truck loading docks on portions of the buildings. Paved parking and access will surround the buildings. Three Storm Water Management (SWM) facilities are proposed, one underground south of Building 1 and two at-grade ponds south of Buildings 2 and 3, respectively. A new road (Clark Boulevard) is proposed between Buildings 1 and 2, connecting to Derry Road West in the north. A future watercourse channel is proposed between Buildings 2 and 3 and along the south of Buildings 1 and 2 (a re-alignment of the existing watercourses). An aerial image of the site is provided on Figure 2A and the proposed concept plan is included as Figure 2B.

The following documents were provided for our review:

- Conceptual Site Plan Scheme: 06F, 6728 Sixth Line, Milton, ON CAN by Ware Malcom, Project Number: TOR22-0102-00, dated January 4, 2023
- Topographic Sketch of Part of Lot 10, Concession 6 New Survey Geographic Township of Trafalgar, Town of Milton, Regional Municipality of Halton by Vujeva Surveys Ltd., JOB No. 18 6072, dated September 13, 2018

The purpose of this hydrogeological investigation was to determine the subsurface conditions beneath the site and provide a report appropriate for the expected dewatering condition, that could be used to support future EASR or PTTW applications prior to construction, if necessary.

It is noted that the recommendations provided in this report must be considered preliminary in nature due to the current uncertainty of the design for the project. As the design progresses further hydrogeological review and input may be required which might necessitate the need for additional investigation and/or analysis.

GEI has also been retained to complete a geotechnical study and slope stability assessment for the site and the findings and recommendations are provided under separate covers.

1.1 Purpose and Scope of Work

The main objectives of the hydrogeological Investigation were to:

- a) Establish the local hydrogeological settings of the site;
- b) Assess groundwater quality and compare the results to the applicable Halton Region Combined Sewer Use By-Law Criteria, Provincial Water Quality Objective (PWQO), and Ontario Regulation 153/04 (O.Reg.153/04), as amended, Site Condition Standards (SCS);
- c) Carry out analysis for construction dewatering rates based on the subsurface conditions and proposed site works, and discuss the regulatory requirements;
- d) Complete a preliminary water balance (pre-construction); and
- e) Prepare a hydrogeological investigation report.

To achieve the investigation objectives, GEI proposed and completed the following scope of work:

- a) Conduct a background desktop review of pertinent geological and hydrogeological resources, Ministry of Environment, Conservation and Parks (MECP) Water Well Records, previous reports, and proposed site plan drawings.
- b) Visit the site and note existing site conditions, site setting, topography, drainage, water features, and potential water wells within 500 m of the site, if any.
- c) Utilization of the data generated from the fifty-four (54) boreholes completed as part of the geotechnical investigation, with the sixteen (16) boreholes instrumented with monitoring wells.
- d) Revisit the site and measure groundwater levels all monitoring wells, perform hydraulic conductivity testing in eight (8) monitoring wells, retrieve representative groundwater samples, and install loggers in ten (10) monitoring wells for long term groundwater monitoring.
- e) Submit two (2) representative unfiltered groundwater samples for laboratory testing to compare against the Halton Region Combined Sewer Use By-Law Criteria, PWQO standards for metals and Total Suspended Solids (TSS) and, O.Reg.153/04, as amended, for Petroleum Hydrocarbons (PHCs), and Volatile Organic Compounds (VOCs), subject to available monitoring well groundwater quantity.
- f) Submit two (2) representative filtered groundwater samples for laboratory testing to compare against the PWQO standards for metals and TSS, subject to sufficient available monitoring well groundwater quantity.
- g) Test thirteen (13) selected soil samples for particle size distribution (as per Ontario LS standards in reference to ASTM D6913 and D7928).

- h) Carry out a dewatering assessment for construction.
- i) Complete a preliminary water balance for the proposed development.
- j) Prepare a hydrogeological report.

1.2 Regulatory Requirements

1.2.1 Source Water Protection

The site is within jurisdictional boundary of the Conservation Halton (CA). The site is within the Halton Source Protection Area, in the Hamilton-Halton Source Protection Region. The following documents should be used in determination of the regulatory requirements when it comes to maintaining hydrogeological function at this site:

• *"Halton-Hamilton Source Protection Plan",* approved November 4, 2022, by the Halton-Hamilton Source Protection Region.

Based on Source Water Protection and Natural Heritage Areas online mapping, the following is noted:

- Wellhead Protection Area (WHPA): The site is not located within a WHPA (Figure 3).
- Intake Protection Zone (IPZ): The site is not located within an IPZ (Figure 4).
- Highly Vulnerable Aquifer (HVA): The site is not located within an HVA (Figure 5).
- Significant Groundwater Recharge Area (SGRA): The site <u>is</u> located within a SGRA (Figure 6).
- Issue Contributing Area (ICA): The site is not located within an ICA (Figure 7).
- The site is not located within the Oak Ridges Moraine.
- The site is not located within the Niagara Escarpment.
- The site <u>is not</u> located in or within 500 m of an Area of Natural and Scientific Interest (ANSI).
- The site <u>is</u> located adjacent to an unevaluated wetland but <u>is not</u> located in or within 500 m of a provincially significant nor non-significant wetland.

1.2.2 Water Taking – Temporary

The volume of water entering the excavation during construction will be based on both groundwater infiltration and precipitation events. Based on O.Reg. 63/16, the following dewatering limits and requirements are as follows:

 <u>Construction Dewatering less than 50,000 L/day</u>: The takings of both groundwater and stormwater does not require a hydrogeological report, does not require registration on the Environmental Activity and Sector Registry (EASR), and does not require a Permit to Take Water (PTTW) from the MECP.

- <u>Construction Dewatering greater than 50,000 L/day and less than 400,000 L/day:</u> The taking of groundwater and/or stormwater requires a hydrogeological report and registration on the EASR but does not require a PTTW from the MECP.
- <u>Construction Dewatering greater than 400,000 L/day:</u> The taking of groundwater and/or stormwater requires a hydrogeological report and requires a PTTW from the MECP.

2. Background Review

The site comprises the former Trafalgar Golf and Country Club at 6728 Sixth Line in Milton, Ontario in the southwest quadrant of the Derry Road West and Sixth Line intersection and is approximately 625 m north-to-south and 1,000 m east-to-west. The surrounding area is predominantly agricultural, with industrial properties to the north, parkland to the east, an institutional property to the south, and residential properties to the west. The site extent is shown in Figures 1, 2a, and 2b.

2.1 Site Physiographic, Geologic and Hydrogeological Settings

The site is approximately rectangular, following the boundaries of Derry Road West (Highway 7), Sixth Line, and Lot 10 Con 6.

The site is located within the physiographic region denoted as the Peel Plain and the local terrain is characterized by sand plains and bevelled till plains (Chapman, L.J. and Putnam, D.F., 2007). The predominant surficial geology of the site is described as till of clay to silt-textured (derived from glaciolacustrine deposits or shale). It is noted that coarse-textured glaciolacustrine deposits of sand, gravel, minor silt and clay, fine-textured glaciolacustrine deposits of silt and clay with minor sand and gravel, interbedded silt and clay, gritty, pebbly flow till, and rainout deposits, and modern alluvial deposits of clay, silt, sand, and gravel, that may contain organic remains, were also identified within the site (Ontario Geological Survey, 2010).

The bedrock underlying the general area corresponds to the Queenston Formation, consisting of shale with siltstone and minor limestone and sandstone. Based on the Drift Thickness of the Brampton Area (Hewitt, D. F., and Vos, M. A., 1969) and MECP Water Well Records in the area, shale and limestone bedrock can be expected to be 4 to 59 m below existing grade.

2.2 Review of MECP Water Well Records and Existing Water Wells

MECP water well records within 500 m of the site area were obtained from the MECP's online interactive well records map to assess the general nature of the groundwater resource in the near vicinity of the site, and historical/current uses of wells in the area. Six (6) well records were found on-site and seventy-four (74) well records were found in the surrounding the site, the approximate MECP well locations are shown on Figure 8 and a well records summary table is included in Appendix A.

The on-site well(s) were installed for the following uses:

- One (1) of the records indicated domestic use for the golf course club house.
 - Well ID: 2808031, located near the east corner of the site, was installed in 1991 and encountered salty water at 25 m below grade within the shale bedrock.
- One (1) of the records indicated commercial use.

- Well ID: 2802597, located near the south corner of the site, was installed in 1965 for commercial and irrigation use and encountered fresh water 13 m below grade within the shale bedrock.
- One (1) of the records indicated irrigation use.
 - Well ID: 2807993, located near the north corner of the site, was installed in 1992, encounter fresh water 9 to 19 m below grade and was screened 6 to 18 m below grade within the overburden.
- Three (3) of the records indicated "Not Used" or did not indicate the well use and are assumed to be unknown.
 - Well ID: 2802601, located near the northeast boundary of the site, was installed in 1960 and encountered salty water 26 m below grade within the shale bedrock.
 - Well ID: 2808205, located near the northeast boundary of the site, was installed in 1993 and encountered water of unknown quality 25 m below grade within the shale bedrock.
 - Well ID: 2080206, located near the northeast boundary of the site, was installed in 1993. No other information regarding depth of water encountered or depth of screen was provided.

The off-site well(s) were installed for the following uses:

- Twenty-two (22) of the records indicated domestic use.
 - Installations took place from 1953 to 2008.
 - Fresh water was encountered in twelve (12) wells from 2 to 60 m below grade within the overburden.
 - Fresh water was encountered in eight (8) wells from 7 to 20 m below grade within the shale bedrock.
 - Salty water was encountered in one (1) well from 27 m below grade within the shale bedrock
 - Water of unknown quality was encountered in one (1) well from 2 m below grade within the overburn
- Two (2) of the records indicated public use for a test hole and an institutional property.
 - Installations took place in 1985 and 2005.
 - Fresh water was encountered in two (2) wells from 19 to 60 m below grade within the overburden.
- One (1) of the records indicated irrigation use.
 - Installation took place in 1971.
 - Fresh water was encountered in one (1) well from 2 to 7 m below grade within the overburden.
- Twenty-three (23) of the records indicated monitoring and/or test hole use.

• Twenty-six (26) of the records indicated "Not Used" or did not indicate the well use and are assumed to be unknown.

The stratigraphic descriptions within the MECP monitoring well records are typically inaccurate due to the methodology in which they are determined (observations of cuttings without depositional context and possibly some mixture between layers, plus no consistency between descriptions of soils between drillers). While this may be the case, an overall sense of the regional stratigraphy can be determined by looking at commonalities between most stratigraphic descriptions and where the wells were terminated in an aquifer. The well records typically indicate overburden of clay and sand layers with variable silt and gravel, over shale and limestone bedrock encountered 4 to 26 m below existing grade.

The domestic and public water supply wells records on and within 500 m of the site provided little information on the regarding the depths of screens, with one (1) well record indicating that a domestic well was screen approximately 16 to 17 m below existing grade, within a gravel unit of the overburden. Fresh water was encountered at depths of 2 to 60 m below existing grade in the domestic and public supply wells during drilling in both the overburden and the shale bedrock, salty water was encountered 25 to 26 m below existing grade in the domestic wells during drilling in the shale bedrock, and water of unknown quality was encountered 2 to 11 m below existing grade in the domestic wells during drilling in the overburden.

As some domestic and public supply wells were installed as recently as 2008 and the surrounding area is within a rural-urban transition area, it is possible that there are domestic and public supply wells are still in use.

2.3 Review of PTTW Records and EASRs

Records of PTTW and water taking EASRs were obtained within 500 m of the site area from the Access Environment and MECP's online interactive permits to take water map to assess the general nature of the groundwater resources in the near vicinity of the site, and the scale of historical/current groundwater takings required in the area. It should be noted that while these records indicate approved daily water taking volumes, it does not provide details on target depths for the water takings nor does it provide the actual volumes extracted, which could be less.

Five (5) separate water taking records were found on-site and three (3) water taking records were found surrounding the site within the search radius. A summary of the conditions noted is provided below.

Location	Approval Type	Status	Dates Originally Issued	Maximum Water Taking Approved (L/day)
		Issued	March 2022	1,635,840
On-Site	PTTW	Revoked and Replaced	February 2006 to July 2010	1,635,840 to 3,273,120
		Expired	November 2015	1,635,840
Off-Site	PTTW	Expired	January 2015 to June 2016	1,285,500 to 24,000,000

2.4 Site Condition Standards

The MECP has developed a set of Soil, Ground water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) and O. Reg. 153/04, as amended. The standards consist of nine tables (Table 1 through Table 9) that provide criteria for maximum concentrations of various contaminants. In general, the applicable O. Reg. 153/04, as amended, SCSs depends on the site location, land use, soil texture, bedrock depth and the applicable potable or non-potable ground water condition at the investigation site.

In order to determine the Site Sensitivity, Sections 41 and 43.1 of O. Reg. 153/04, as amended, were evaluated by GEI as shown in the following table:

Criteria	Result		
Current Property Use	Golf Course		
Proposed Property Use	Warehousing		
Potable vs. Non-Potable Ground Water	Potable		
Proximity of Areas of Natural Significance	> 30 m		
Proximity to a Water Body	< 30 m		
Shallow Soil Condition	No		
Current Land Use	Parkland		
Proposed Land Use	Industrial		
Applicable Site Condition Standard for	Table 8: Generic Site Condition Standards for		
Proposed Use	Use within 30 m of a Water Body in a Potable		
	Groundwater Condition (Table 8 RPI/ICC)		

2.5 Visual Inspection of the Site

A visual site inspection was carried out on May 24, 2023, by GEI staff to assess site drainage, topography and the presence of surface water features.

The surrounding area is predominantly agricultural, with industrial properties to the north, parkland to the east, an institutional property to the south, and residential properties to the west.

At the time of the site inspection the conditions were sunny, approximately 20°C, and the topography of the site was observed to be of rolling hills, with an overall slope down a total of 8.8 m towards the east/northeast such that there is an elevation high at the southern corner of site (Borehole 36) and an elevation low at the eastern corner of site (Borehole 53), as measured at the boreholes. Channeling around the tributaries of Sixteen Mile Creek was observed, such that there was approximately a 1 m difference between the bank and toe of the tributaries.

On site there were two tributaries of the Sixteen Mile Creek identified, as well as multiple water hazards related to the golf course operation, and a stormwater management pond. Adjacent to the site, at the eastern corner, the main channel of Sixteen Mile Creek was observed.

3. Procedures and Methodology

It is noted that all elevations in this report are metric and expressed in metres (m). All measurements are also in metric and expressed in millimeters (mm), meters (m) or kilometers (km).

3.1 Borehole Drilling and Monitoring Well Installation

The borehole locations were laid out in the field by GEI staff prior to commencement of drilling operations. The locations of underground utilities were completed with the assistance of public and private locating companies.

Ground surface elevations of the boreholes were interpreted from the design drawings provided by the client and horizontal coordinates (referencing NAD 83 geodetic datum) were recorded by a hand-held GPS device. The elevations and coordinates are provided on the borehole logs in Appendix A. Borehole locations are shown on Figure 2.

The fieldwork for the drilling program was carried out between April 21 and May 1, 2023. Boreholes 1 to 42, 44 and 48 to 54 were advanced from 5.0 to 8.1 m below existing grade (Elev. 187.4 to 178.6). Boreholes 43, 45, 46 and 47 were drilled earlier for the slope stability assessment on March 6, 2023, and were advanced to 5.0 to 8.1 m depth (Elev. 183.7 to 181.1). Borehole logs are provided in Appendix B and the borehole locations are shown on Figure 2A (aerial image) and Figure 2B (concept plan).

The boreholes were advanced by a drilling subcontractor retained and supervised by GEI using a track-mounted drill rig, solid stem augers, and standard soil sampling equipment. Sampling was conducted using a 51 mm O.D. Split Spoon (SS) sampler. Standard Penetration Test (SPT) "N" Values (N values) were recorded for the sampled intervals as the number of blows required to drive an SS sampler 305 mm into the soil using a 63.5 kg drop hammer falling 750 mm, in accordance with ASTM D1586. In each borehole soil sampling was conducted at 0.75 m intervals for the upper 3.0 m and at 1.5 m intervals thereafter.

Monitoring wells were installed in Boreholes 1, 2, 13, 14, 22 to 24, 26, 28, 31, 35, 37, 40, 43, 45 and 52 by GEI to facilitate long-term groundwater monitoring, each consisting of 50 mm diameter PVC pipe with a 1.5 m long screen and protective casing. Boreholes without wells were backfilled in accordance with O.Reg. 903. Monitoring well construction is shown on the borehole logs in Appendix A and summarized below.

Monitoring Well ID	Well Screen Depth / Elevation (m) / Elev.	Unit Screened
BH/MW 1	4.6 to 6.1 / 187.7 to 186.2	Sandy Silt Glacial Till
BH/MW 2	3.0 to 4.6 / 188.2 to 186.7	Sandy Silt Glacial Till

Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 17, 2024

Monitoring Well ID	Well Screen Depth / Elevation (m) / Elev.	Unit Screened
BH/MW 13	1.5 to 3.0 / 188.8 to 187.3	Clayey Silt
BH/MW 14	2.4 to 4.0 / 187.7 to 186.1	Sandy Silt Glacial Till
BH/MW 22	1.5 to 3.0 / 187.9 to 186.4	Sandy Silt Glacial Till
BH/MW 23	4.6 to 6.1 / 184.8 to 183.3	Sandy Silt Glacial Till
BH/MW 24	3.0 to 4.6 / 186.5 to 184.9	Clayey Sandy Silt Glacial Till
BH/MW 26	1.5 to 3.0 / 187.8 to 186.3	Clayey Silt / Sandy Silt Glacial Till
BH/MW 28	3.0 to 4.6 / 186.5 to 185.0	Sandy Silt Glacial Till
BH/MW 31	6.1 to 7.6 / 184.4 to 182.9	Clayey Sandy Silt Glacial Till
BH/MW 35	1.5 to 3.0 / 189.9 to 188.4	Silt / Sandy Silt Glacial Till
BH/MW 37	6.1 to 7.6 / 185.9 to 184.4	Sandy Silt Glacial Till
BH/MW 40	3.0 to 4.6 / 187.2 to 185.6	Sandy Silt Glacial Till
BH/MW 43	3.0 to 4.6 / 183.1 to 181.6	Sandy Silt Glacial Till
BH/MW 45	3.0 to 4.6 / 185.4 to 183.9	Sandy Silt Glacial Till
BH/MW 52	1.5 to 3.0 / 187.2 to 185.6	Clay and Silt

Boreholes without wells were backfilled in accordance with O.Reg.903.

The GEI field staff examined, and classified characteristics of the soils encountered in the boreholes, including the presence of fill materials, groundwater observations during and upon completion of the drilling, recorded observations of borehole construction, and processed the recovered samples. All recovered soil samples were logged in the field, carefully packaged, and transported to GEI's laboratory for more detailed examination and classification.

In GEI's laboratory, the samples were classified as to their visual and textural characteristics. A total of nineteen (19) representative samples of the major soil units were selected and submitted to our laboratory for grain size analysis. Seven (7) of the samples were also submitted for Atterberg Limits tests. Laboratory results are provided in Appendix C. It is noted that the laboratory testing from the slope stability report is presented on separate figures.

3.2 Hydraulic Conductivity Testing

Rising head hydraulic conductivity tests were completed to estimate the horizontal hydraulic conductivity (K) of the soils at the well screen depths. These tests were completed in eight (8) monitoring wells on site on May 24 to 31, 2023. Water was manually purged rapidly from monitoring wells using LDPE tubing and a foot valve. The static water level was measured prior to the start of testing, and the initial change in water level was monitoring wells to measure recovery of the groundwater to equilibrium, with regular manual measurements recorded for corroboration and correction of the level logger data.

The semi-log plots for drawdown versus time for the tests are provided in Appendix D.

3.3 Groundwater Sampling

To establish baseline conditions and assess the suitability for discharge of pumped groundwater to surface during potential dewatering activities, the following groundwater samples were collected from Borehole/Monitoring Wells (BH/MWs) 23 and 37 on May 30, 2023:

- Two (2) unfiltered groundwater samples were collected from BH/MW 23 and 37 and analyzed against the Halton Region Sanitary Sewer Use By-Law Criteria, PWQO for metals and TSS, and O.Reg.153/04, as amended, SCS for PHCs and VOCs;
- Two (2) filtered groundwater samples were collected from BH/MW 23 and 37 and analyzed against PWQO for metals and TSS only.

Prior to collection of the samples, a minimum of three (3) standing well volumes of groundwater were purged from each well. The samples were collected and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The field filtered samples were processed through a 45 μ m filter prior to collection in the required vials/bottles. The samples were submitted to CALA-accredited EUROFINS for analysis. The results of the groundwater chemistry are presented in the laboratory Certificates of Analysis provided in Appendix E.

4. Subsurface Conditions

4.1 Stratigraphy

The detailed soil profiles encountered in the boreholes are indicated on the attached borehole logs in Appendix B, and the geotechnical laboratory results are included in Appendix C. The borehole locations are shown on Figure 2 and the subsurface profiles interpreted from those logs is included as Figures 9 and 10.

It should be noted that the conditions indicated on the borehole logs are for specific locations only and can vary between and beyond the locations. It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones and should not be interpreted as exact planes of geological change.

In addition, the descriptions provided in the borehole logs are inferred from a variety of factors, including visual observations of the soil samples retrieved, laboratory testing, measurements prior to and after drilling, and the drilling process itself (speed of drilling, shaking/grinding of the augers, etc.). The passage of time also may result in changes in conditions interpreted to exist at locations where sampling was conducted.

4.1.1 Topsoil

A surficial topsoil layer was at the ground surface in all boreholes except Boreholes 17 and 27 ranging in thickness from 50 to 280 mm. In Borehole 27, the 180 mm topsoil layer was buried beneath the surficial fill.

4.1.2 Fill

A fill layer was encountered in most boreholes and considered to be associated with final grading for the golf course. Boreholes 3 to 8, 10 to 13, 15, 17 to 21, 23 to 34, 36, 37, 40, 41, and 43 to 54 encountered fill below the topsoil, locally at the surface, and the fill was penetrated at 0.2 to 2.3 m depth (Elev. 191.6 to 182.1). The fill predominantly consisted of clayey silt or sandy clayey silt or sandy silt, varying to sand and silt or silty sand. Trace organics and rootlets were observed in some boreholes. The fill was moist to wet with moisture contents of 10 to 32%. The fill typically had N values of 10 or less revealing soft to stiff / very loose to compact conditions.

4.1.3 Clayey Silt / Sandy Clayey Silt / Clay and Silt

A cohesive unit of soil comprising clayey silt, sandy clayey silt, or clay and silt was encountered below the fill and/or the topsoil, locally the discontinuous cohesionless soil layers (described below), in most boreholes, except Boreholes 16, 18, 34, 43, 49, 50 to 53 and 54. The unit was penetrated at depths of 1.1 to 4.6 m (Elev. 189.9 to 185.6). Grain size analysis results of seven (7) samples are included in Figures C1 and C3 in Appendix C. Atterberg limits tests on three samples are provided in Figure BC, with plastic limits of 15.7 to 18.7 and liquid limits of 27.5 to 35.9. The moisture contents ranged between 8 and 28%, being moist to wet. The N values in these layers

ranged between 4 to more than 50 blows, indicating firm to hard conditions but typically stiff to very stiff.

4.1.4 Sandy Silt / Silt / Sand and Silt / Sand / Gravelly Sand / Sand and Gravel

Localized layers of cohesionless soil consisting of sandy silt, silt, sand and silt, sand, gravelly sand, or sand and gravel were observed below the upper clayey soil layers and/or the topsoil in Boreholes 1, 11, 16, 35, 38, 42 and 53. These layers were generally observed at depths of 0.2 to 2.6 m (Elev. 189.9 to 182.1) and extended to 1.5 to 3.5 m depth (Elev. 189.2 to 181.4). Locally, these layers were observed in Boreholes 27, 36, and 38 from 4.6 to 4.8 m (Elev. 287.5 to 182.6) and extended to 4.7 to 5.0 m depth (Elev. 187.4 to 182.2). One (1) sample of the sand material was submitted for grain size analysis and the results are provided in Figure C4 in Appendix C. The soil was moist to wet with moisture contents of 16 to 25%. The soil was loose to compact, and N values ranged from 5 to 29 blows.

4.1.5 Glacial Till

A glacial till deposit was encountered in all boreholes below the upper soil layers and extended below the 5.0 to 8.1 m depth of exploration (Elev. 183.7 to 181.1). The till matrix predominantly consisted of sandy silt or sandy clayey silt, locally grading to clayey silt or gravelly sand. Cobbles and boulders should be expected based on augers grinding during advancement of the boreholes. Eleven (11) samples of the material were submitted for grain size analysis and the results are provided in Figures C5 and C6 in Appendix C. Four (4) samples were also submitted for Atterberg Limit tests and the results are presented on Figure C7 in Appendix C. Plastic limits of 8.0 to 16.9 and liquid limits of 20.4 to 34.0 were revealed from the lab testing. The glacial till was brown, brownish grey or grey near the base, and was typically moist to wet, with moisture contents ranging from 6 to 29%, typically 7 to 12%. N values were 4 to more than 50 blows, indicating compact to very dense / firm to hard conditions, typically compact / stiff to very stiff.

4.2 Groundwater Conditions

Unstabilized groundwater level measurements and cave-in measurements were taken upon the completion of drilling of each borehole as shown on the borehole logs in Appendix B. These measurements were taken to provide a rough estimate of the possible excavation and temporary groundwater control constructability considerations that may arise. The boreholes remained open and dry upon completion. Additional groundwater level measurements taken during the remainder of the field investigation are considered more representative of static groundwater conditions as the wells had been developed and had time to recover and stabilize following initial construction.

The groundwater observations are noted on the borehole logs in Appendix B, and a summary is provided below.

Monitoring Wall ID	Groundwater Level / Depth (m) / Elev.		
Monitoring Well ID	May 23, 2023	June 22, 2023	
BH/MW 1	0.7 / 191.6	1.0 / 191.3	
BH/MW 2	0.5 / 190.7	0.8 / 190.4	

Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 17, 2024

Monitoring Well ID	Groundwater Lev	el / Depth (m) / Elev.
	May 23, 2023	June 22, 2023
BH/MW 13	1.0 / 189.4	1.4 / 189.0
BH/MW 14	0.5 / 189.6	0.8 / 189.3
BH/MW 22	0.5 / 189.0	0.6 / 188.9
BH/MW 23	0.9 / 188.5	1.2 / 188.1
BH/MW 24	0.6 / 188.9	0.9 / 188.6
BH/MW 26	1.1 / 188.2	1.3 / 188.0
BH/MW 28	0.9 / 188.7	1.1 / 188.5
BH/MW 31	1.0 / 189.5	1.2 / 189.3
BH/MW 35	0.4 / 191.0	0.7 / 190.7
BH/MW 37	1.2 / 190.8	1.5 / 190.6
BH/MW 40	0.5 / 189.7	0.9 / 189.3
BH/MW 43	-0.4 / 186.5	-0.1 / 186.3
BH/MW 45	3.3 / 185.5	3.5 / 185.0
BH/MW 52	Well Destroyed	Well Destroyed

The stabilized groundwater level measurements within the monitoring wells were observed May and June 2023 at depths of 0.4 m above current grade to 3.5 m below current grade, corresponding to Elev. 191.6 to 185.5. The highest water levels were measured at Monitoring Wells 43 (0.4 m above current grade) and 1 (Elev. 191.6) on May 23, 2023.

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. It is noted that site water flow appears to flow east toward the main branch of the Middle Sixteen Mile Creek, east adjacent to the site, as shown in Figure 11. It is anticipated that the local water flow will generally be east towards Sixteen Mile Creek and regional water flow will generally be southeast towards Lake Ontario.

Long term groundwater levels monitoring is ongoing at the site. This long term monitoring, upon completion, will provide input on the seasonal high groundwater table for any building underground levels and the base of infiltration-based LID development measures to be situated/designed appropriately. GEI has been retained to attend the site and conduct manual readings in all eleven (11) wells during monthly visits for a year (May 2023 to April 2024) with data loggers installed in all wells to provide continuous monitoring (hourly readings). A letter report under a separate cover will be provided to summarize the readings at the end of the monitoring period.

The groundwater level highs for each month as measured by the loggers to date (May 2023 to December 2023) are provided in Appendix J. In summary, Monitoring Well 43, located in the south-central portion of the site, exhibited the shallowest groundwater, measuring 0.4 m above the current grade (Elev. 186.5) in May 2023. Conversely, the highest groundwater elevation occurred at Monitoring Well 1, situated in the northwestern portion of the site, registering Elev. 191.5 (0.8 m below current grade) during the months of May and June 2023. Monitoring well locations are shown in Figure 2.

4.3 Hydraulic Conductivity

In-situ hydraulic conductivity tests were conducted in eight (8) monitoring wells on May 24 to 31, 2023. Values were calculated using AQTESOLV Pro V4.50.002 for Windows as developed by HydroSOLVE, Inc. from the rising head test data using Hvorslev's solution (1951) where the well screen was fully saturated. The semi-log plots for the results are provided in Appendix D and are summarized in the table below. It should be noted that the hydraulic conductivity values obtained from the manual level measurements were very similar to the results obtained from the test where the logger data was analyzed.

Borehole / Monitoring Well	Well Screen Location Depth (m) / Elev.	Unit Screened	In-Situ Hydraulic Conductivity (K) (m/s)
BH/MW 2	3.0 to 4.6 / 188.2 to 186.7	Sandy Silt Glacial Till	7.3 × 10 ⁻⁶ m/s
BH/MW 13	1.5 to 3.0 / 188.8 to 187.3	Clayey Silt	4.8 × 10 ⁻⁸ m/s
BH/MW 14	2.4 to 4.0 / 187.7 to 186.1	Sandy Silt Glacial Till	7.3 × 10 ⁻⁸ m/s
BH/MW 23	4.6 to 6.1 / 184.8 to 183.3	Sandy Silt Glacial Till	4.5 × 10 ⁻⁸ m/s
BH/MW 28	3.0 to 4.6 / 186.5 to 185.0	Sandy Silt Glacial Till	2.2 × 10⁻ ⁶ m/s
BH/MW 35	1.5 to 3.0 / 189.9 to 188.4	Silt / Sandy Silt Glacial Till	1.3 × 10⁻ ⁶ m/s
BH/MW 37	6.1 to 7.6 / 185.9 to 184.4	Sandy Silt Glacial Till	1.6 × 10 ⁻⁷ m/s
BH/MW 45	3.0 to 4.6 / 185.4 to 183.9	Sandy Silt Glacial Till	8.3 × 10 ⁻⁷ m/s

According to Freeze and Cherry (1979), the typical range in hydraulic conductivity is as follows:

- Silty Sand: 10⁻³ m/s to 10⁻⁷ m/s
- Silt: 10⁻⁵ m/s to 10⁻⁹ m/s
- Glacial Till: 10⁻⁶ m/s to 10⁻¹² m/s
- Clay: 10⁻⁹ m/s to 10⁻¹² m/s

From the hydraulic conductivity test results for the wells screened within or across the sandy silt glacial till encountered on site, the results $(10^{-6} \text{ m/s to } 10^{-8} \text{ m/s})$ fell within the range of the expected values for glacial till $(10^{-6} \text{ m/s to } 10^{-12} \text{ m/s})$ and for the wells screened within or across the silt and clayey silt encountered on site, the result $(10^{-6} \text{ m/s to } 10^{-8} \text{ m/s})$ fell within the range of the expected values for silt $(10^{-5} \text{ m/s to } 10^{-9} \text{ m/s})$.

As such, the highest value, 7.6×10^{-6} m/s, is considered an appropriately conservative hydraulic conductivity value to apply for the dewatering calculations across the site.

4.4 Hydrostratigraphy

Based on the stratigraphy identified on site, the stabilized groundwater and hydraulic conductivity observed in the wells, the predominant water-bearing unit that are expected to generate groundwater inflow during dewatering are the loose to compact cohesionless soils consisting of sandy silt, silt, sand and silt, sand, gravelly sand, or sand and gravel encountered below the topsoil and/or upper clayey soil layers and generally extending to 1.5 to 3.5 m depth (Elev. 189.2 to 181.4).

To a lesser extent, some groundwater flow may be encountered from the compact to very dense / firm to hard glacial till deposits encountered below the upper soil layers and extended below the 5.0 to 8.1 m depth of exploration (Elev. 183.7 to 181.1). Inflow encountered from these soils would primarily be expected from gravelly, sandy, or silty seams within these units which may be temporary depending on the extents and interconnectedness of such features.

Some perched water is to be expected in the fill encountered below the topsoil, extending to 0.2 to 2.3 m depth (Elev. 191.6 to 182.1).

The firm to hard cohesive unit of soil comprising clayey silt, sandy clayey silt, or clay and silt encountered below the topsoil and/or fill extending to depths of 1.1 to 4.6 m (Elev. 189.9 to 185.6) is not expected to be a significant source of groundwater inflow based on observations made during the field investigation.

4.5 Groundwater Quality

To assess the suitability for discharge of pumped groundwater to the land surface or to sewers during dewatering activities, four (4) groundwater samples total, two (2) unfiltered and two (2) filtered, were collected from BH/MWs 23 and 37 on May 30, 2023.

For assessment purposes, the analytical results were compared to the Halton Region Sewer Use By Law Criteria, PWQO, and O.Reg.153/04 Table 1, as amended. The results of the groundwater chemistry are presented in the laboratory Certificates of Analysis provided in Appendix E. A summary of the results is presented in the table below for samples relative to the Halton Region Sewer Use By Law Criteria, PWQO, and O.Reg.153/04, as amended.

Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 17, 2024

Monitoring Well Sample Location	Well Screen Location Depth (m) / Elev.	Parameters Tested	Exceedances of Halton Region Combined Sewer Use By Law Criteria	Exceedances of PWQO	Exceedances of O.Reg.153/04 Table 1
BH/MW 23 (Unfiltered)	4.6 to 6.1 / 184.8 to 183.3	Halton Region Sewer Use By Law Criteria PWQO: Metals, TSS O.Reg. 153/ 04: PHCs, VOCs	No exceedances	PWQO: No exceedances Interim PWQO: Boron	No Exceedances
BH/MW 23 F (Filtered)		PWQO: Metals, TSS	Not Tested	PWQO: No exceedances Interim PWQO: Boron	Not Tested
BH/MW 37 (Unfiltered)	6.1 to 7.6 / 185.9 to 184.4	Halton Region Sewer Use By Law Criteria PWQO: Metals, TSS O.Reg. 153/ 04: PHCs, VOCs	Sanitary: No exceedances	PWQO: Iron Interim PWQO: Boron	No Exceedances
BH/MW 37 F (Filtered)		PWQO: Metals, TSS	Not Tested	PWQO: No exceedances Interim PWQO: Boron	Not Tested

The unfiltered groundwater samples collected from BH/MWs 23 and 37 met the Halton Region Sewer Use By Law Criteria

The unfiltered groundwater sample collected from BH/MWs 23 and 37 met the PWQO and Interim PWQO with the exception of PWQO iron (BH/MW 37) and Interim PWQO boron (BH/MWs 23 and 37). No exceedances to O.Reg. 153/04 Table 1 were encountered for PHCs or VOCs.

The filtered groundwater samples collected from BH/MWs 23 and 37 met the PWQO and Interim PWQO with the exception of exceedances to the Interim PWQO for boron. It is noted that some filters may be effective at removing certain forms of boron from water, however, filtering alone does not guarantee complete removal or reduction of boron concentrations found in the groundwater. The reduction or removal of boron from groundwater may depend on the form of boron present, the type of filter used, and the properties of the water sample itself. The effectiveness of a specific filter in reducing boron depends on its pore size, surface properties, and the specific adsorption or filtration mechanisms involved, and should be determined by a dewatering contractor prior to discharging any water to the surface.

If pumped groundwater will be discharged to the Halton Region Sewer or the surface it must be suitably treated to remove the parameter exceedances prior to discharge (treatment methods to be determined by the dewatering contractor or civil engineer).

It is expected that during construction dewatering, the pumped water is to be first discharged to a sedimentation tank and/or a silt/sediment bag, at a minimum, before being discharged to surface.

5. Discussion and Analysis

5.1 **Preliminary Construction Dewatering**

5.1.1 Generic Excavations and Temporary Groundwater Control

The site comprises the land in the southwest quadrant of the Derry Road West and Sixth Line intersection and is approximately 625 m north-to-south and 1,000 m east-to-west, as shown on Figure 2.

The elevation of the site is ranges from Elev. 183.6 to 192.4 such that there is an elevation high at the southern corner of site (Borehole 36) and an elevation low at the eastern corner of site (Borehole 53), as measured at the boreholes.

The highest stabilized groundwater level measurements within the monitoring wells were observed on May 23, 2023 and ranged from 0.4 m above current grade to 3.3 m below current grade, as measured at the monitoring wells.

It is GEI's understanding that the proposed work includes two at-grade SWM facilities south of Buildings 2 and 3. A future watercourse channel is also proposed between Buildings 2 and 3 and along the south of Buildings 1 and 2 (a re-alignment of the existing watercourses). It is assumed that the site will be serviced with municipal water, storm, and sanitary sewers. The current designs provided (Figure 2b) may be subject to change.

Based on both GEI's review of these drawings and our correspondence, the following assumptions regarding construction geometry were made:

Dewatering Zone	Description	Assumed Lowest Local Ground Elevation (m asl)	Assumed Lowest Proposed Excavation (m bgs)	Assumed Length of Excavation (m)	Assumed Width of Excavation (m)
1 – General Site Servicing	Per 100 m of water, storm and sanitary sewer service trenching to Buildings 1 to 3	183.6 ⁽¹⁾	4 ⁽²⁾	100	4 ⁽²⁾
2 – General Creek Realignment	Per 100 m of creek realignment trenching between Buildings 2 and 3 and along the south of Buildings 1 and 2	183.6 ⁽¹⁾	1 ⁽³⁾	100	5 ⁽³⁾
3 – At-Grade SWM Pond (Building 2)	At-grade SWM facilities south of Building 2	187.3 ⁽⁴⁾	6	300 ⁽⁵⁾	80 ⁽⁵⁾

Dewatering Zone	Description	Assumed Lowest Local Ground Elevation (m asl)	Assumed Lowest Proposed Excavation (m bgs)	Assumed Length of Excavation (m)	Assumed Width of Excavation (m)
4 – At-Grade SWM Pond	At-grade SWM facilities south of	183.6 ⁽¹⁾	6	110 ⁽⁵⁾	90 ⁽⁵⁾
(Building 3)	Building 3				

1. Lowest ground elevation on site at Borehole 53.

2. The site servicing excavations for the project site are assumed to account for engineered fill placement, and associated service connections.

- 3. Dimensions based on the Topographic Sketches by Vujeva Surveys Ltd (2018).
- 4. Lowest ground elevation on site at Borehole 34.

5. Dimensions based on the Conceptual Site Plan by Ware Malcomb (2023).

It has been assumed that below the topsoil, excavations are anticipated to encounter fill of clayey silt or sandy clayey silt or sandy silt, varying to sand and silt or silty sand, over native soils including a cohesive unit of soil comprising clayey silt, sandy clayey silt, or clay and silt, underlain by localized layers of cohesionless soil consisting of sandy silt, silt, sand and silt, sand or sand and gravel, underlain by a glacial till deposit with a till matrix predominantly consisted of sandy silt or sandy clayey silt, locally grading to clayey silt or gravelly sand. Cobbles and boulders should be expected based on augers grinding during advancement of the boreholes.

5.1.2 Construction Dewatering Assumptions

For conservative purposes, the construction dewatering calculation is based on an open cut excavation at the present time to excavate under dry conditions. Based on GEI's investigation, the following assumptions were used for the calculation of the dewatering rates for the proposed development are presented below:

Dewatering Zone	Description	Assumed Highest Local Groundwater Level (m bgs)	Assumed Local Target Water Level (m bgs)	Assumed Local Aquifer Bottom (m bgs)	Assumed Hydraulic Conductivity (m/s)
1 – General Site Servicing	Per 100 m of water, storm and sanitary sewer service trenching to Buildings 1 to 3	-0.4(1)	4.5 ⁽²⁾	5.5 ⁽³⁾	7.3×10 ^{-6 (4)}
2 – General Creek Realignment	Per 100 m of creek realignment trenching between Buildings 2 and 3 and along the south of Buildings 1 and 2	-0.4 ⁽¹⁾	1.5 ⁽²⁾	2.5 ⁽³⁾	7.3×10 ^{-6 (4)}

Dewatering Zone	Description	Assumed Highest Local Groundwater Level (m bgs)	Assumed Local Target Water Level (m bgs)	Assumed Local Aquifer Bottom (m bgs)	Assumed Hydraulic Conductivity (m/s)
3 – At-Grade SWM Pond (Building 2)	At-grade SWM facilities south of Building 2	-0.4 ⁽¹⁾	6.5 ⁽²⁾	7.5 ⁽³⁾	7.3×10 ^{-6 (4)}
4 – At-Grade SWM Pond (Building 3)	At-grade SWM facilities south of Building 3	0.9(5)	6.5 ⁽²⁾	7.5 ⁽³⁾	7.3×10 ^{-6 (4)}

1. Highest groundwater level measures in the vicinity from Monitoring Well 43 on May 23, 2023.

2. 0.5 *m* below the lowest proposed excavation.

- 3. 1.0 m below the target water level.
- 4. Maximum hydraulic conductivity measured on site at Monitoring Well 2.
- 5. Highest groundwater level measures in the vicinity from Monitoring Well 28 on May 23, 2023.

Based on the aforementioned assumptions for the expected construction scenario, excavations at the site are assumed to extend approximately 4.9 to 6.9 m below the prevailing groundwater table.

5.1.3 Temporary Dewatering Flow Rate Calculations

The Dupuit equation for linear flow from an unconfined aquifer for a fully penetrating excavation was used to obtain a flow rate estimate for the proposed linear infrastructure, and is expressed as follows:

$$Q_{\rm w} = Kx \frac{{\rm H}^2 - {\rm h}^2}{L_0}$$

Where:

 Q_w = Rate of pumping (m³/s)

X = Length of excavation (m)

- L₀ = Length of influence (m) $(L_0 = \frac{R_0}{2})$
- K = Hydraulic conductivity (m/s)
- H = Head beyond the influence of pumping (static groundwater elevation) (m)
- h = Head above base of aquifer at the excavation (m)

The dewatering rates are expected to decrease once steady state conditions are achieved within the excavation footprints as groundwater will have been removed locally from storage resulting in lower seepage rates into the excavations.

Based on the assumptions provided in this report, the results of the dewatering rate estimates are summarized below, and calculation details are provided in Appendix F:

Location and Scenario	Construction Dewatering Flow Rate without a Safety Factor	Construction Dewatering Flow Rate Including Safety Factor of 2.0	Construction Dewatering Flow Rate Including Safety Factor of 2.0 with a 10 mm Rainfall Event		
	L/day				
1: General Site Servicing per 100 m	111,700	223,400	227,400		
2: General Creek Realignment per 100 m	63,700	127,400	132,400		
3: General Stormwater Management Pond (Building 2)	526,300	1,052,600	1,292,600		
4: General Stormwater Management Pond (Building 3)	236,600	473,200	572,200		

The total construction dewatering flow rate includes a factor of safety of 2.0 to account for seasonal fluctuations in the groundwater table, initial removal of groundwater from storage and variation in hydrogeological properties beyond those encountered during the course of this study. This total dewatering flow rate also provides additional capacity for the dewatering contractors. A 10 mm rain event was also included in the water taking calculation. Given that the predicted temporary water taking rates for construction dewatering exceeds 50,000 L/day and 400,000 L/day it is recommended that a PTTW from MECP be obtained for the site for the construction of the at-grade SWM facilities, the general site servicing and the creek channel realignment.

The maximum water taking rate to be requested in the PTTW application depends on the construction phasing. If multiple areas will be dewatered and constructed concurrently, the zones of influence will overlap and higher water taking rates should be requested. A 10-year PTTW duration (i.e., the maximum PTTW duration) can be considered if the construction phasing will extend over several years.

Please note that it is the responsibility of the contractor to ensure dry conditions are maintained within the excavations at all times. Based on the calculated water taking rate, it is expected that well points and/or deep wells will be required to achieve the recommended drawdowns during earthworks of the underground parking and site servicing, and a series of sump pumps may be suitable to achieve the recommended drawdowns during earthworks of the recommended drawdowns during earthworks of the site servicing and channel re-alignment. However, the dewatering contractor is responsible for selecting the dewatering method based on their preferred means and methods after reviewing the information

provided in this report. Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Additionally, the presence of near-surface fill material could hold significant groundwater. The maximum flow calculation is intended to provide a conservative estimate to account for unforeseeable conditions that may arise during construction. It should be noted that the dewatering estimates provided in this report are based on assumptions and details available at the time of this report. If changes to the design are considered (e.g., increase to planned excavation depths, widening of excavations, etc.), the dewatering estimates must be revised to include and reflect future changes and to confirm that conclusions and recommendations provided here remain valid.

The maximum flow calculation is intended to provide a conservative estimate to account for variable or unusual conditions that may arise during construction. It should be noted that the dewatering estimates provided in this report are based on assumptions and details available at the time of this report. If changes to the design are implemented (e.g., increase to planned excavation depths, widening of excavations, increased length of trenching etc.), the dewatering estimates must be revised to include and reflect future changes and to ensure that any conclusions or recommendations made by GEI remain valid.

5.1.4 Radius of Influence

The Radius of Influence (ROI) for the construction dewatering is based on the empirical Sichardt Equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible. This equation is empirical and was developed to provide representative flow rates using the steady state flow dewatering equations, as discussed below.

It is noted that in steady state conditions, the radius of influence of pumping will extend until boundary flow conditions are reached and provide sufficient water inputs to the aquifer, such as recharge and surface water bodies. As a result, the distance of influence calculated using the Sichardt equation is used to provide a representative flow rate calculation, but it is not precise in determining the actual radius influenced by pumping.

The ROI of pumping (dewatering) for radial flow was calculated based on the Sichardt equation, which is described as follows:

$$R_0 = 3000 (H - h)\sqrt{K}$$

Where:

K= Hydraulic conductivity (m/s)H= Static Saturated Head (m)h= Dynamic Saturated Head (m)

 R_0 = Radius of influence (m)

Based on the Sichardt equation, the hydraulic conductivity of 7.3 x 10^{-6} m/s and the total groundwater drawdown required at this site, the ROIs can be assumed to be 15 to 56 m from the centre of the excavations for radial flow. Calculation details are provided in Appendix F, and zone-specific ROIs are summarized below:

Dewatering Zone	Description	ROI (m)
1: General Site Servicing per 100 m	Sanitary, storm, and water servicing for Buildings 1 to 3 Removal of existing channel below grade between Buildings 2 and 3	40
2: General Creek Realignment per 100 m	Future watercourse channel proposed between Buildings 2 and 3 and along south of Buildings 1 and 2	15
3: General Stormwater Management Pond	South of Building 2	56
4: General Stormwater Management Pond	South of Building 3	45

The ROI calculation is a conservative methodology and is calculated based on the assumption of active (steady state) pumping during the construction dewatering. It should be noted that a higher volume of water will be pumped during the first stage of the construction period or when a rain event occurs. It is uncertain whether dewatering efforts would reach steady state prior to the completion of construction of each dewatered segment.

5.1.5 Remedial Dewatering Activities

The dewatering contractor is responsible for finalizing and implementing the discharge plan, including information such as the exact discharge location, erosion control methods, method of conveyance, treatment systems, temperature of the discharged groundwater, etc. It is the contractor's responsibility to implement a treatment system to ensure that discharged groundwater meets the applicable By-Law Criteria or PWQO. This may be done by examining the hydrogeologic conditions in a test pit (and/or a full-range pumping test by the dewatering subcontractor).

The dewatering discharges should follow the best management practices, including sediment and erosion control measures, removal of suspended solids by a decanting tank, as well as water quality and quantity control monitoring programs, as mentioned earlier. The contractor should be aware that the purpose of the dewatering system is to maintain stable excavation slopes and dry working conditions during excavation.

The extent and details of the dewatering scheme (trench or well dimensions, spacing, pump levels, screen size and wick gradation, etc.) are left solely to the contractor's discretion to achieve the performance objectives for maintaining stable slopes and dry working conditions and will be based on their own interpretation and analysis of site conditions, equipment, experience, and efficiency. The contractor should also appreciate that additional dewatering means and modifications may be required as variations in site conditions are encountered. The recommended groundwater taking and discharge plans are provided in Appendices G and H, respectively.

5.1.6 Impact Assessment for Groundwater Dewatering

The impact assessment for taking groundwater during construction is provided in the Groundwater Talking Plan in Appendix G and includes a review of settlement, impacts to nearby groundwater users or to surface water / environmental features.

One (1) record of a domestic water supply well was found on-site (Well ID: 2808031) installed in 1991 for the use of the golf course club house. Twenty-two (22) domestic water supply well records were identified within 500 m of the site, installed from 1953 to 2008. Two (2) public water supply well records were identified within 500 m of the site for a test hole installed in 1986 for future irrigation / public supply use (Well ID: 2806503) and a water supply well installed in 2006 for the Radha Soami Society Beas Canada (Well ID: 2810623).

It is unknown if the domestic or public water supply wells within 500 m of the site have been abandoned or are no longer in use for domestic supply since some of the surrounding area is developed and now serviced by the Town of Milton. However, one (1) domestic well installed in 1959 (Well ID: 2802600) may be within the estimated radius of influence for drawdown and may be impacted by the temporary dewatering that is occurring near the ground surface.

As the total estimated drawdown during dewatering will be 4.9 to 6.9 m below current grade, a door-to-door well survey should be undertaken to determine if any the domestic or public water wells within the estimated radius of influence for drawdown are still in use.

5.2 Preliminary Water Balance

5.2.1 Water Balance Components

A water balance is an accounting of the water resources within a given area. The water balance equates the precipitation (P) over a given area to the summation of the change in groundwater storage (S), evapotranspiration/evaporation (ET), surface water runoff (R) and infiltration (I) using the following equation:

$$\mathbf{P} = S + I + ET + R$$

The components of the water balance vary in space and time and depend on climatic conditions as well as the soil and land cover conditions (i.e., rainfall intensity, land slope, soil hydraulic conductivity and vegetation). For example, runoff occurs at a higher percentage during periods of snowmelt when the ground is frozen or during intense rainfall events.

Precise measurement of the water balance components is difficult, and as such, approximations and simplifications are made to characterize the water balance of a property. Field observations of the drainage conditions, land cover and soil types, groundwater levels and local climatic records are important inputs to the water balance calculations.

• <u>Precipitation (P)</u>: For the purposes of approximating the annual precipitation at this site, the monthly rainfall between 1981 and 2010 was used based on Environment Canada historical weather data for the Georgetown WWTP weather station (Climate

ID 6152695, Latitude 43.63 N, Longitude 79.9 W, Elevation 221 m), which is located about 11.6 km north of the site.

- <u>Storage (S):</u> Although there are groundwater storage gains and losses on a short-term basis, the net change in groundwater storage on a long-term basis is assumed to be zero.
- <u>Evapotranspiration/Evaporation (PET)</u>: The evapotranspiration and evaporation components vary based on the characteristics of the land surface cover (i.e., type of vegetation, soil moisture conditions, perviousness of surfaces, etc.). Potential evapotranspiration refers to the water loss from a vegetated surface to the atmosphere under conditions of an unlimited water supply. Evaporation occurs from a hard surface (such as flat rooftops, asphalt, gravel parking areas, etc.).
- <u>Water Surplus (R + I)</u>: The difference between the mean precipitation and evapotranspiration is referred to as the water surplus. The water surplus is divided into two parts: as surface or overland runoff (R) and the infiltration into the surficial soil (I). The infiltration is comprised of two end member components: one component that moves vertically downward to underlying aquifers (referred to as percolation, deep infiltration or net recharge) and a second component that moves laterally through the near surface soil profile or shallow soils as interflow that re-emerges locally to surface (i.e., as runoff) at some short distance and time following precipitation.

5.2.2 Approach and Methodology

The analytical approach to calculate the water balance involves monthly soil-moisture balance calculations to determine the pre-development infiltration volumes. The detailed water balance calculation is provided in Appendix I, which is summarized in this and subsequent sections of the report. The following assumptions were used as part of the soil-moisture balance calculations:

- A soil moisture balance approach assumes that soils do not release water as potential recharge while a soil moisture deficit exists.
- During wetter periods, any excess of precipitation over evapotranspiration first goes to restore soil moisture. Considering the nature of the near surface soils and vegetation cover, a soil moisture storage capacity of 125 mm was assumed.
- Once the soil moisture deficit is overcome, any further excess water can then pass through the soil as infiltration and either become interflow (indirect runoff) or recharge (deep infiltration).

Monthly potential evapotranspiration calculations accounting for latitude, climate and the actual evapotranspiration and water surplus components of the water balance based on the monthly precipitation and soil moisture conditions was calculated. The *MECP SWM Planning and Design Manual* (2003) methodology for calculating total infiltration based on topography, soil type and land cover was used, and a corresponding infiltration factor was calculated for pre- and post-development conditions. The water surplus was multiplied by the infiltration factor to determine both the pre-existing and post-condition annual volumes for run-off and infiltration for the property.

The pre-development scenario was estimated from the site inspection and aerial images and the post-development scenario was estimated from the Conceptual Site Plan by Ware Malcomb (2023) for the site and is summarized as flows:

Condition	Total Area	Woodland Areas	Pasture / Lawn Area	Paved Areas	Rooftop Area
Pre-Development Land Use	636,650 m ²	31,800 m ²	595,800 m ²	7,500 m ²	1,550 m ²
Post-Development Land Use	636,650 m ²	0 m ²	313,250 m ²	161,500 m ²	161,900 m ²

It is noted that the infiltration and runoff values presented in Appendix I are estimates only. Single values are used for the water balance calculations, but it is important to understand that infiltration rates are dependent upon the hydraulic conductivity of the surficial soils which may vary over several orders of magnitude. As such, the margins of error for the calculated infiltration and runoff component values are potentially quite large. These margins of error are recognized, but for the purposes of this assessment, the numbers used in the water balance calculations are considered reasonable estimates based on the site-specific conditions and useful for comparison of pre- to post-development conditions.

5.2.3 Pre and Post Development Water Balance

Detailed water balance calculations are included in Appendix I. The pre and post development calculations summarized in this section are preliminary only and must be updated once site plans are finalized.

The table below summarizes the pre and post construction water balance as per the proposed site development plans.

Condition	Average Annual Runoff Volume (m³/year)	Average Annual Infiltration Volume (m ³ /year)
Existing Land Use (Pre-Development)	116,270	74,569
Proposed Land Use (Post-Development No Mitigation)	296,291	36,754

These calculations suggest that, without mitigation such as LID measures, the proposed development will decrease average infiltration by approximately 37,815 m³/year (51% decrease). The proposed development will increase runoff by approximately 153,021 m³/year (155% increase). This means about 37,815 m³/year of infiltration is required to maintain the water balance. The potential impacts of these changes and recommended mitigation measures are discussed below.

5.2.4 Mitigation Measures for Maintaining Infiltration

The increases in surface water runoff that will occur with urban development and mitigation of the potential impacts to the local water table due to reduction of infiltration will be minimized by using

appropriate stormwater management and using the proposed LID measures to promote infiltration. These measures can be implemented on-site.

The basic premise for LID is to try to minimize changes to runoff and infiltration. As outlined in the *MECP SWMP Design Manual* (2003) and *Low Impact Development Stormwater Management Planning and Design Guide* published by the Credit Valley Conservation (CVC) and TRCA (2010), there are a suite of techniques that may be considered to promote infiltration and reduce runoff.

Implementation of any LID measures will not only allow for infiltration of the surface water into the near-surface groundwater regime but will also allow for increase in natural filtration of surficial runoff, prevent sedimentation transport and potential erosion, and help reduce flooding by increasing the transit time for water on the site. These types of LID techniques promote natural infiltration by providing additional water volumes in the previous areas. This is particularly effective in the summer months when natural infiltration would not generally occur because the additional water overcomes the natural soil moisture deficit.

Before any LID measures are implemented for the site, the details and designs should demonstrate through plans and sections (including all dimensions, materials used and including the seasonal high groundwater level) how this infiltration deficit will be mitigated.

As it is typically a requirement of maintaining the same levels of infiltration post-construction, no appreciable change in the groundwater table elevation should occur over the long-term condition. The water balance calculations show that the amount of infiltration will decrease for the post-construction scenario without mitigation, compared to existing conditions.

5.2.4.1 Groundwater Quality

Depending on land use, runoff from urban developments may contain a variety of dilute contaminants such as suspended solids, chloride from road salt, oil and grease, metals, pesticide residues, phosphorous, bacteria and viruses. For groundwater, generally except for the dissolved constituents such as nitrogen and salt, most contaminants are attenuated by filtration during groundwater flow through the soils.

LID measures or end treatments such as oil/grit separators or wet ponds also help to remove suspended solids and other contaminants in runoff prior to infiltration or conveying the flows off the site, especially when a treatment train approach is taken for stormwater management. Any stormwater management facilities must be designed such that the water quality is maintained or improved prior to discharging water from the site or infiltrating water into the ground.

The site is a "major development," is not within a WHPA Zone Q1 nor within an HVA, however it is within an SGRA. Infiltration of runoff from vegetated areas and rooftops is always permitted but there may be some restrictions for infiltration of runoff from paved areas due to the proposed commercial development. Pre-treatment may be an option in this case.

Since only clean or pre-treated runoff will be infiltrated, the groundwater quality will not be degraded and will not impact nearby domestic wells or nearby environmental features.

6. Limitations

The recommendations and comments provided are necessarily on-going as new information of underground conditions becomes available. More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during excavation operations. Consequently, conditions not observed during this investigation may become apparent. Should this occur, GEI should be contacted to assess the situation and additional testing and reporting may be required.

GEI should be retained for a general review of the final design drawings and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, GEI will assume no responsibility for interpretation of the recommendations in the report.

The comments given in this report are intended only for the guidance of the design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc. could be greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

This report was authorized by and prepared by GEI for the Anatolia Investments Corporation (as provided in the signed Standard Professional Services Agreement). Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. GEI accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

7. Closure

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact our office.

Yours truly,

GEI Consultants

Prepared By:

Sarah Griffith, G.I.T. Hydrogeologist-in-Training

Reviewed By:

ň

Kimberly Gilder, P.Geo. Senior Hydrogeologist

lella

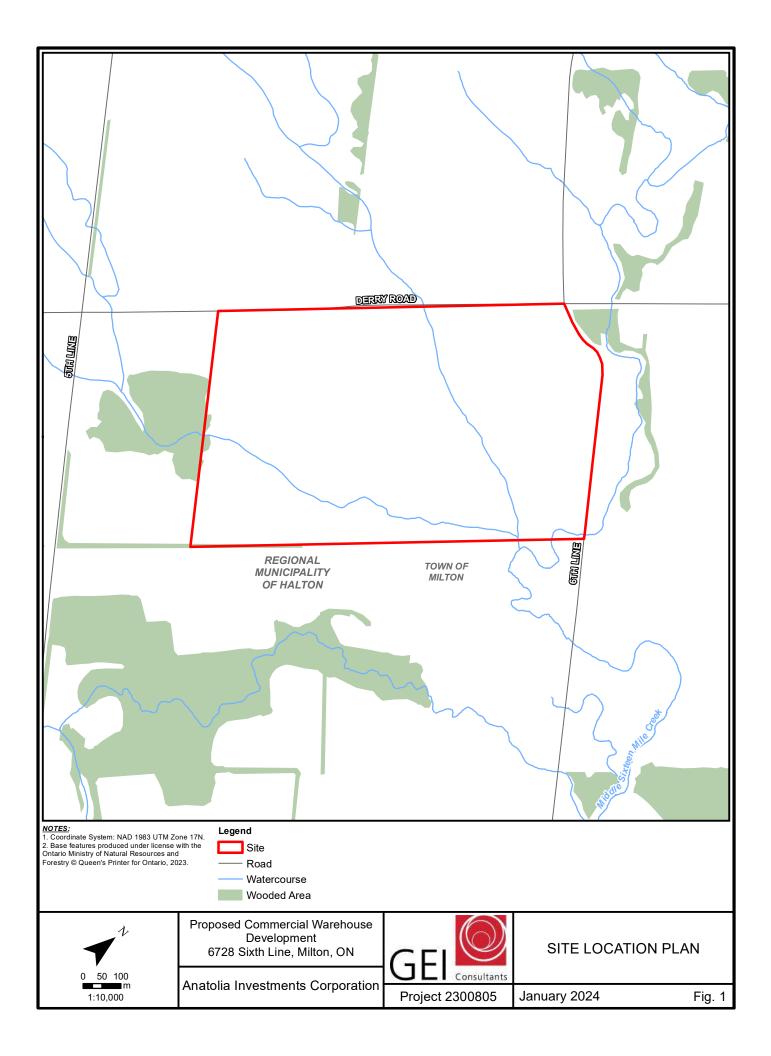
Geoffrey R. White, P.Eng. Geotechnical Practice Lead

8. References

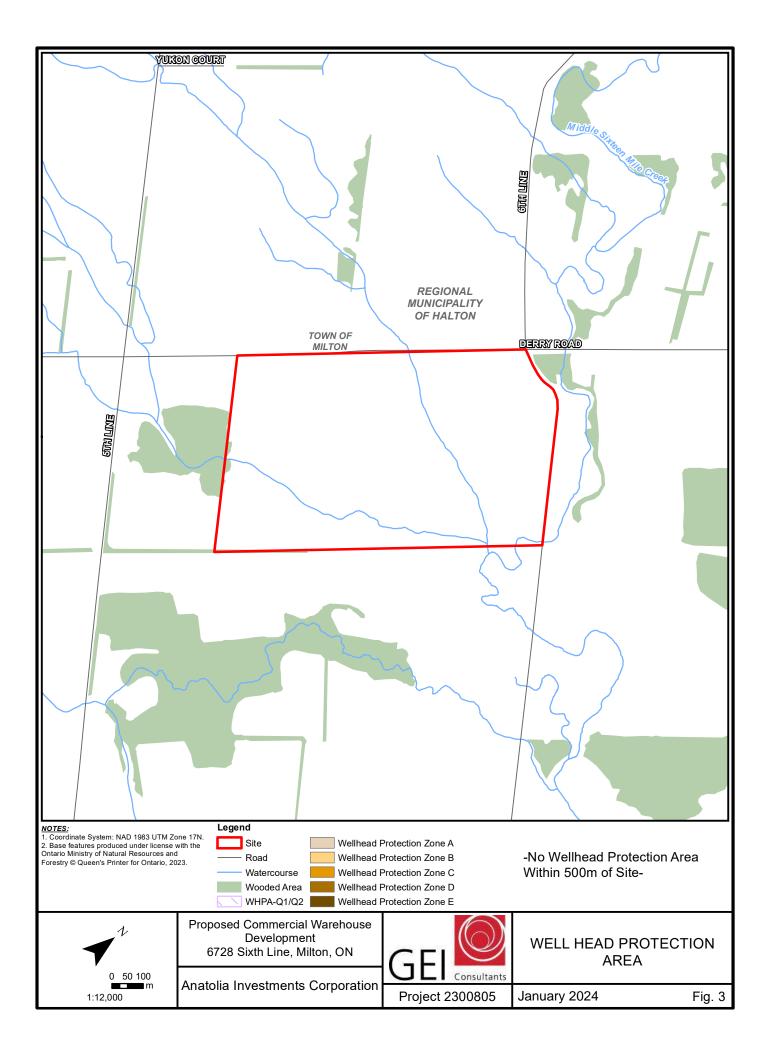
- Access Environment. Retrieved from [https://www.lioapplications.lrc.gov.on.ca/Access_Environment/index.html?viewer=Acces s Environment.AE&locale=en-CA].
- 2. Chapman, L.J., & Putnam, D.F. 1984, digitized in 2007. Physiography of southern Ontario, Ontario Geological Survey Miscellaneous Release--Data 228.
- Dagan, G. 1978. A note on packer, slug, and recovery tests in unconfined aquifers. Water Resources Research, 14(5), 929-934.
- 4. Dupuit, J. (1863). Etudes Théoriques et Pratiques sur le mouvement des Eaux dans les canaux découverts et à travers les terrains perméables (2nd ed.). Paris: Dunod.
- 5. Freeze, R. A., & Cherry, J. A. 1979. Groundwater. Prentice-Hall Inc.
- Halton-Hamilton Source Protection Region. 2022. 23. Halton-Hamilton Source Protection Plan. Amended November 4, 2022. Retrieved from [https://www.protectingwater.ca/wp-content/uploads/sites/2/2023/02/HHSPPclean_221104.docx.pdf].
- Hvorslev, M.J. 1951. Time Lag and Soil Permeability in Ground-Water Observations (Bull. No. 36). Waterways Experiment Station, Corps of Engineers, U.S. Army, Vicksburg, Mississippi.
- 8. HydroSOLVE, Inc. 2007. AQTESOLV Pro V4.50.002 for Windows.
- 9. King's Printer for Ontario, 1990 (amended 2020). Ontario Water Resources Act, Ontario Regulation 903: Wells. Retrieved from [https://www.ontario.ca/laws/regulation/900903].
- King's Printer for Ontario, 1990 (amended 2021) Ontario Regulation 63/16: Water Taking And Transfer, Environmental Protection Act, . Retrieved from [https://www.ontario.ca/laws/regulation/r16064].
- King's Printer for Ontario, 1990 (amended 2021). Ontario Regulation 153/04: Records of Site Condition, Environmental Protection Act, .
- Ministry of Northern Development, Mines, Natural Resources and Forestry. (1969).
 Brampton area, southern Ontario, drift thickness sheet [Map M2179]. Scale 1:63,360.
 Compiled by D. F. Hewitt & M. A. Vos.
- Ontario Geological Survey 2011. Bedrock geology of Ontario, Ontario Geological Survey, Miscellaneous Release---Data 126-Revision 1.
- Ontario Geological Survey. 2010. Surficial geology of Southern Ontario, Ontario Geological Survey Miscellaneous Release--Data 128-REV.

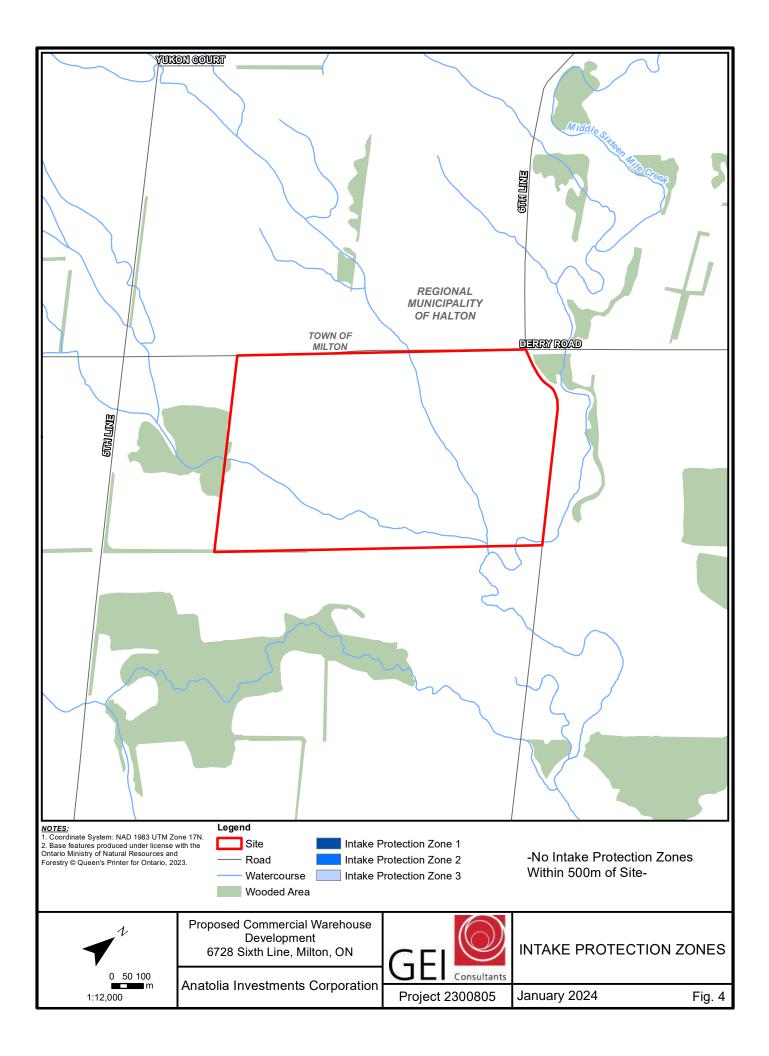
 Ontario Ministry of Natural Resources and Forestry. 2023. Natural Heritage Areas. Retrieved from

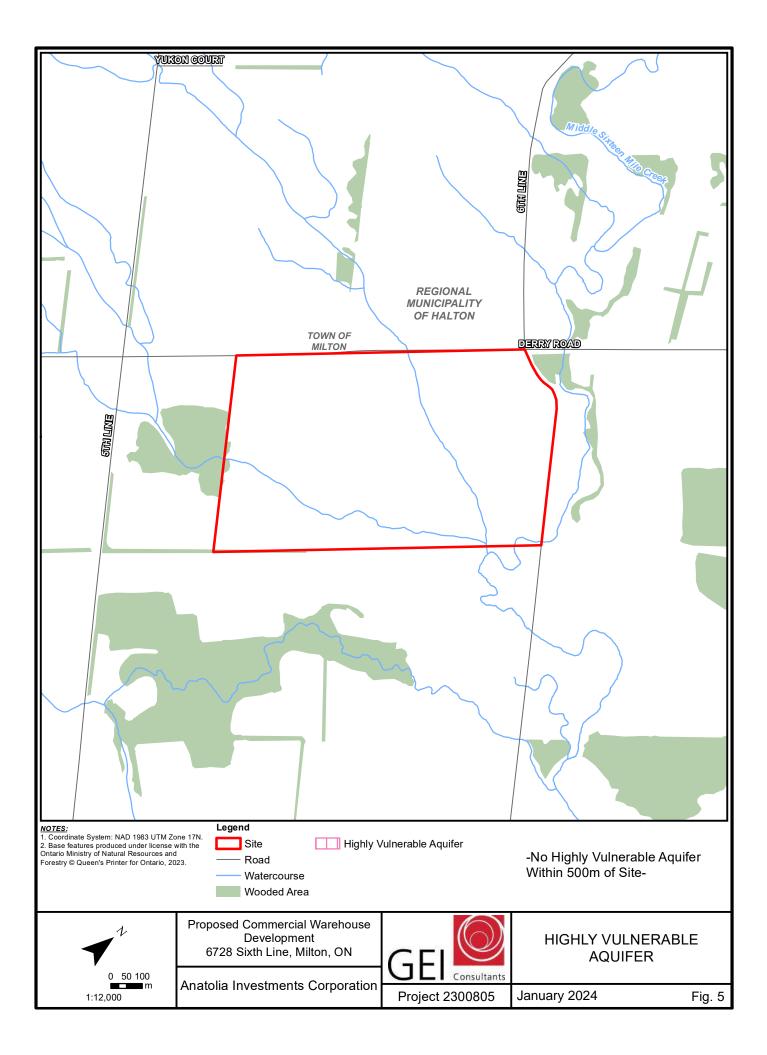
[https://www.lioapplications.lrc.gov.on.ca/Natural_Heritage/index.html?viewer=Natural_H eritage.Natural_Heritage&locale=en-CA].

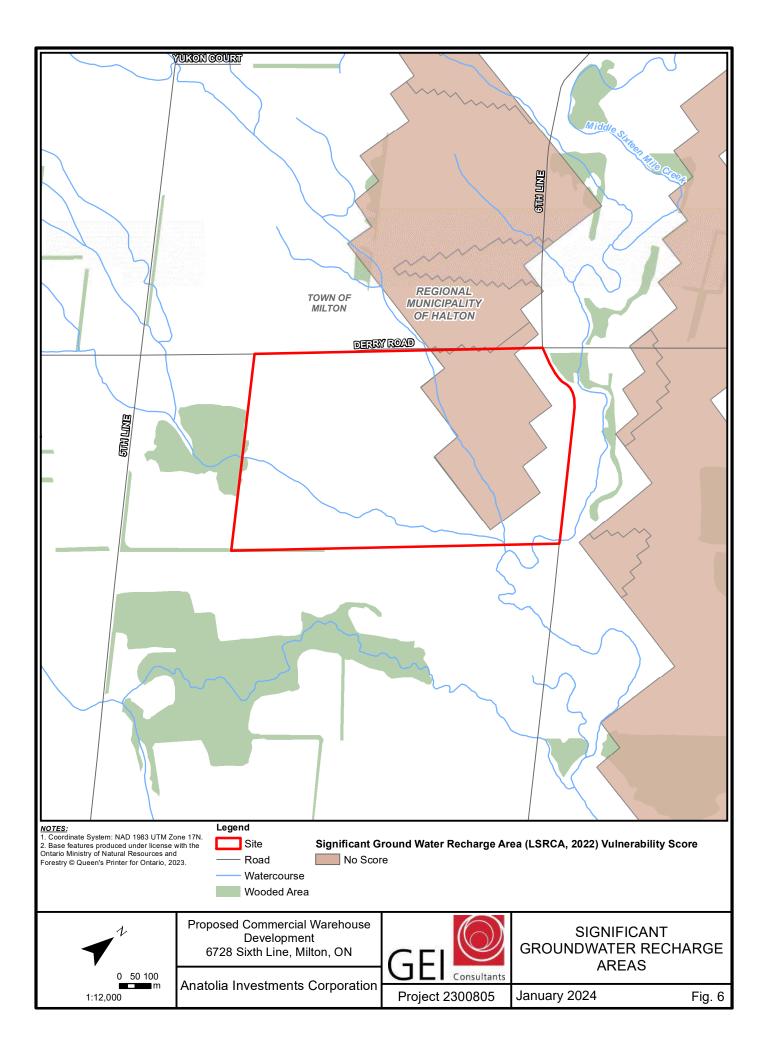

- Ontario Ministry of the Environment, Conservation and Parks. Map: Water Well Information System (WWIS). Retrieved from [https://www.ontario.ca/page/map-wellrecords].
- 17. Ontario Ministry of the Environment, Conservation and Parks. Map: Permits to take water. Retrieved from [https://www.ontario.ca/page/map-permits-take-water].
- Ontario Ministry of the Environment, Conservation and Parks. Source Water Protection Information Atlas. Retrieved from [https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=Sou rceWaterProtection.SWPViewer&locale=en-CA].
- Ontario Ministry of the Environment. 1994. Provincial Water Quality Objective. Water management: policies, guidelines, provincial water quality objectives. Retrieved from [https://www.ontario.ca/page/water-management-policies-guidelines-provincial-waterquality-objectives#section-3].
- 20. Sichardt, W., & Kyrieleis, W. (1930). Grundwasser absekungen bei fundierungsarbeiten.
- The Regional Municipality of Halton. 2003. Sewer Use By law. The Regional Municipality of Halton By-Law No. 2-03. Retrieved from [https://www.halton.ca/Repository/By-law-2-03-Wastewater].
- Vujeva Surveys Ltd. 2018. 25. Topographic Sketch of Part of Lot 10, Concession 6 New Survey – Geographic Township of Trafalgar, Town of Milton, Regional Municipality of Halton. JOB No. 18 – 6072.
- 23. Ware Malcom. 2023. Conceptual Site Plan Scheme: 06F, 6728 Sixth Line, Milton, ON CAN.

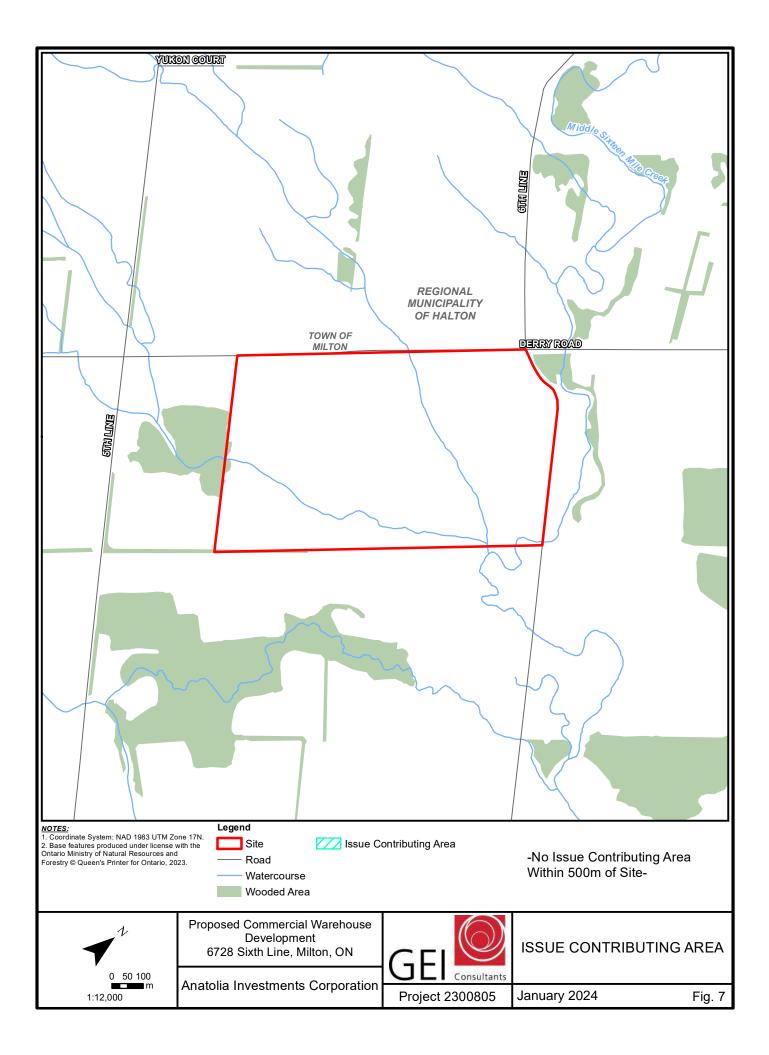
Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 17, 2024

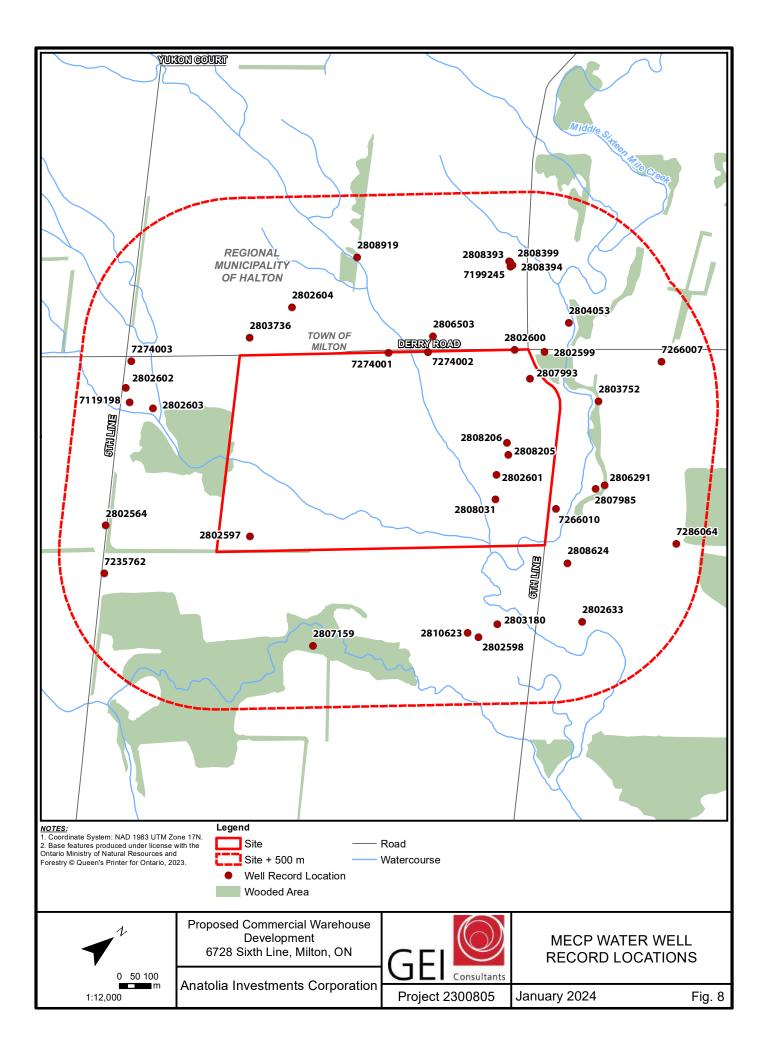


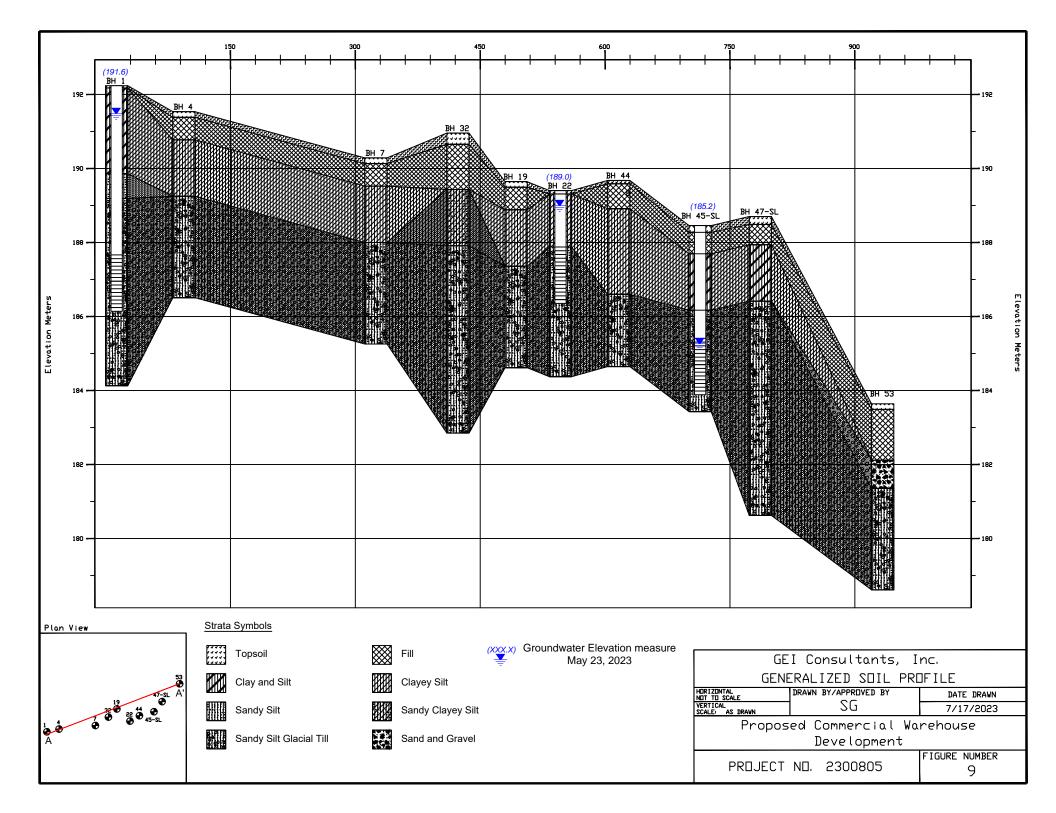


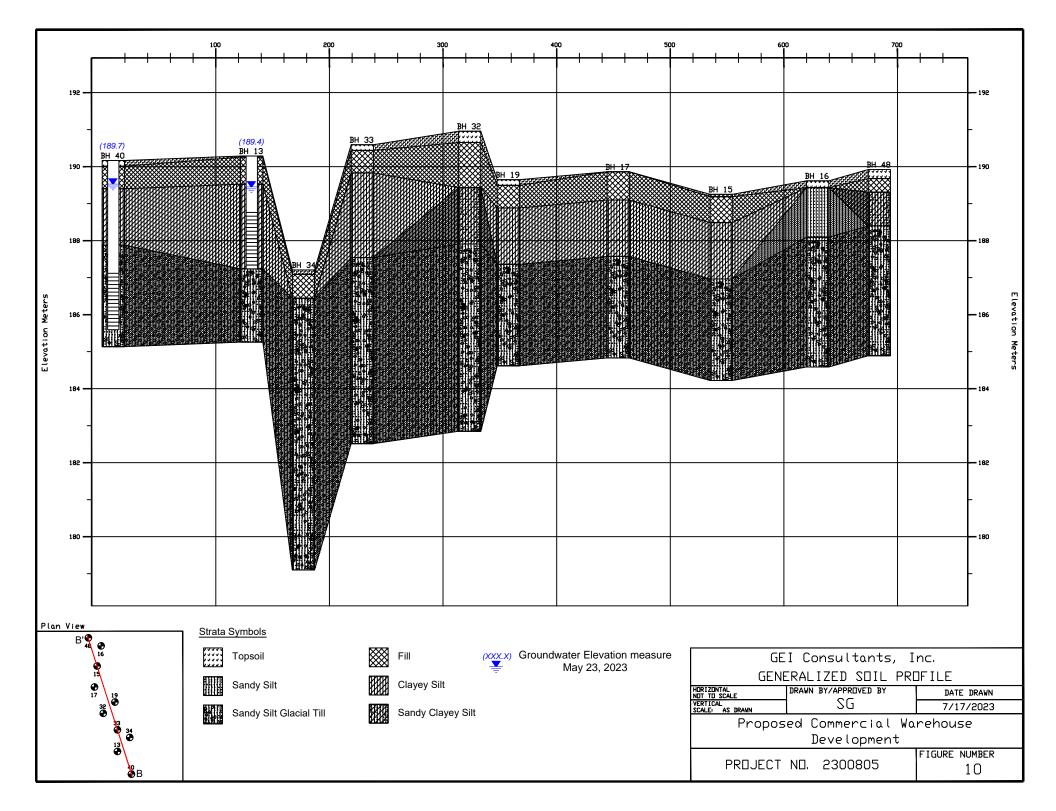


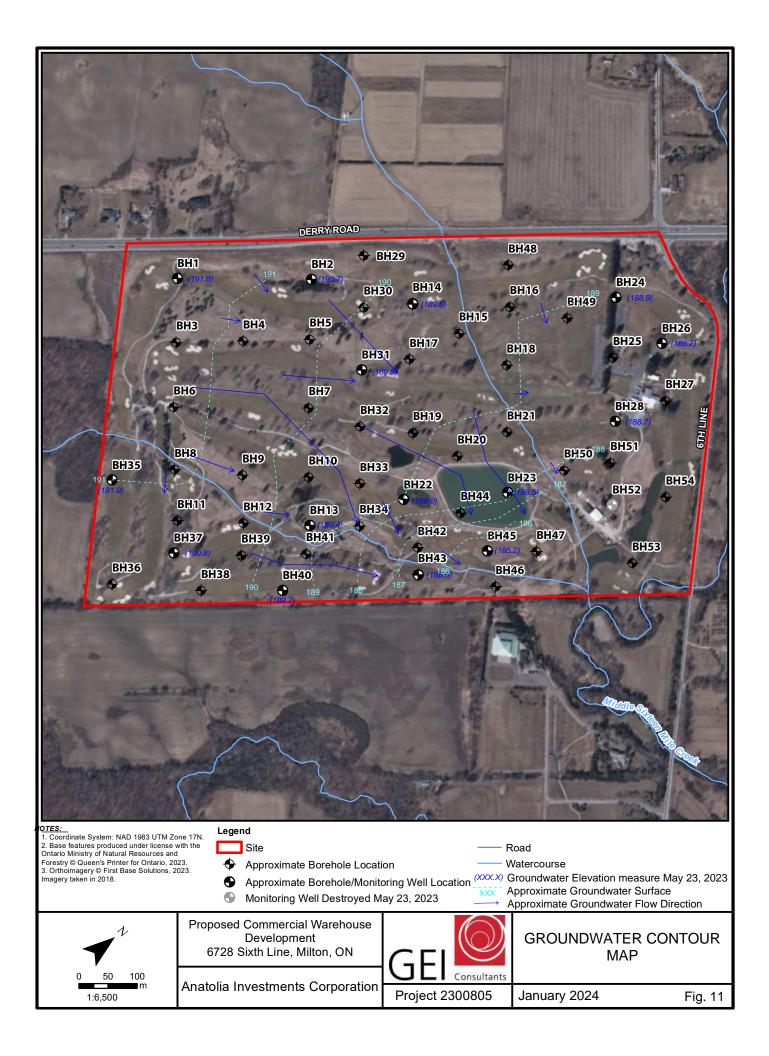












MECP Water Well Records

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	Well ID Only	WELL	FORMATION
MILTON TOWN (TRAFALG	17 595791 4821744 W	2016/05 7238	2			мо	0039 5	7266010	7266010 (Z232700) A201621	LOAM 0002 GREY CLAY SAND SLTY 0012 GREY CLAY SLTY 0042 RED SILT CLAY SNDY 0065
MILTON TOWN (TRAFALG	17 595629 4822296 W	2016/05 7238	2			МО	0048 5	7266007	7266007 (Z232699) A201623	BRWN LOAM 0002 GREY SAND SLTY 0012 GREY SILT CLAY SNDY 0026 GREY CLAY SLTY 0046 RED SAND CLAY STNS 0051 RED SHLE 0054
MILTON TOWN (TRAFALG	17 594591 4820971 W	6875						7274003	7274003 (Z227656) A	
MILTON TOWN (TRAFALG	17 595148 4821731 W	6875						7274002	7274002 (Z227668) A	
MILTON TOWN (TRAFALG	17 595073 4821631 W	6875						7274001	7274001 (Z227669) A	
MILTON TOWN (TRAFALG	17 595096 4822104 W	2013/02 7472	417	7		NU		7199245	7199245 (Z166626) A	
MILTON TOWN (TRAFALG	17 594141 4821511 W	2016/02 7475	2			мо	0010 10	7258404	7258404 (Z227543) A200563	BRWN SAND GRVL PCKD 0005 GREY CLAY SILT DNSE 0015 RED HARD 0020
MILTON TOWN (TRAFALG	17 594155 4821482 W	2016/02 7472	2			мо	0010 10	7258403	7258403 (Z227544) A200562	BRWN SAND GRVL PCKD 0005 GREY CLAY SILT SAND 0015 RED_SHLE HARD 0020
MILTON TOWN (TRAFALG	17 594141 4821441 W	2016/02 7472	2			мо	0010 10	7258402	7258402 (Z227538) A200561	BRWN SAND GRVL PCKD 0005 GREY CLAY SILT SAND 0015 RED SHLE HARD 0020
MILTON TOWN (TRAFALG	17 596347 4821190 W	2016/06 7238	2			мо	0053 5	7266004	7266004 (Z232919) A201626	LOAM SNDY 0005 TILL 0058 SHLE 0060
MILTON TOWN (TRAFALG	17 595070 4820488 W	2014/10 7472	2.04			мо	0035 10	7235762	7235762 (Z200641) A172490	RED SILT LOOS 0015 GREY CLAY SILT PCKD 0035 GREY CLAY SILT FSND 0045
MILTON TOWN (TRAFALG	17 595448 4822113 W	2021/04 7472						7389001	7389001 (Z343417) A P	
MILTON TOWN (TRAFALG	17 595336 4821967 W	2021/04 7472						7389003	7389003 (Z343414) A P	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	Well ID Only	WELL	FORMATION
MILTON TOWN (TRAFALG	17 595381 4822027 W	2021/04 7472						7389002	7389002 (Z343415) A P	
MILTON TOWN (TRAFALG	17 595047 4820457 W	2017/09 6607						7298238	7298238 (C31119) P	
MILTON TOWN (TRAFALG	17 594526 4820796 W	2018/05 7472	2			МО	0005 10	7319816	7319816 (Z277345) A242013	BRWN LOAM LOOS 0001 YLLW CLAY SILT PCKD 0015
MILTON TOWN (TRAFALG	17 596113 4821977 W	2017/03 6607	5.09			МО	0050 10	7286064	7286064 (Z248216) A217854	BRWN SILT TILL 0012 GREY SHLE LMSN 0060
MILTON TOWN (TRAFALG	17 594770 4820704 W	2018/05 7472	2			МО	0010 10	7319817	7319817 (Z277348) A242014	BRWN LOAM LOOS 0001 YLLW CLAY SILT 0020
MILTON TOWN (TRAFALG	17 594146 4821412 W	2019/05 7230						7338874	7338874 (C45655) A265111 P	
MILTON TOWN (TRAFALG	17 595382 4822029 W	2021/04 7472						7393792	7393792 (Z343416) A P	
MILTON TOWN (TRAFALG	17 594926 4820501 W	2021/11 7320						7408292	7408292 (Z352060) A318852 P	
MILTON TOWN (TRAFALG 06 009	17 595928 4821282 W	2006/07 7268	2.46	FR 0194	46/171/0/ 22:0	PS		2810623	2810623 (Z08016) A007916	BLCK LOAM 0007 BRWN CLAY 0062 BRWN CLAY GRVL 0105 GREY CLAY GRVL 0184 GREY GRVL 0194
MILTON TOWN (TRAFALG NS 05 010	17 594954 4820511 W	2019/05 7484		UT 0005				7339714	7339714 (Z295773) A	
MILTON TOWN (TRAFALG NS 05 010	17 594662 4820607 W	1959/10 1718	7	SA 0080	35/80/1/1 :0	NU		2802562	2802562 () A	PRDG 0030 RED SHLE 0080
MILTON TOWN (TRAFALG NS 05 010	17 594682 4820632 W	1959/10 1718	7	FR 0024	9///:			2802563	2802563 () A	LOAM 0001 YLLW CLAY 0024 SILT 0030 RED SHLE 0055
MILTON TOWN (TRAFALG NS 05 010	17 594952 4820585 W	1961/05 1307	30	FR 0031	16//1/:	DO		2802564	2802564 ()	BRWN LOAM CLAY 0017 RED SHLE 0031
MILTON TOWN (TRAFALG NS 06 008	17 596310 4821169 W	2016/10 7501	2	UT 0021		МТ	0020 10	7280480	7280480 (Z228822) A196898	BRWN LOAM LOOS 0000 BRWN TILL CLAY HARD 0015 BRWN CLAY SAND DNSE 0030

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	Well ID Only	WELL	FORMATION
MILTON TOWN (TRAFALG NS 06 008	17 596277 4821158 W	2022/03 7360	2			МО	0020 10	7416239	7416239 (4SSGCH5J) A314179	GREY TILL HARD 0030
MILTON TOWN (TRAFALG NS 06 008	17 596247 4821089 W	2022/03 7360	2			МО	0020 10	7416238	7416238 (BVMKJECV) A314164	GREY TILL HARD 0030
MILTON TOWN (TRAFALG NS 06 009	17 595659 4820869 L	1988/11 1130	7 6	FR	/30/5/1:3 0	DO		2807159	2807159 (41971)	BRWN LOAM 0008 BRWN CLAY BLDR 0030 RED CLAY 0045 RED_SHLE ROCK 0085
MILTON TOWN (TRAFALG NS 06 009	17 595835 4820955 W	2022/03 7360	2			МО	0020 10	7416248	7416248 (NM3G5IEU) A347300	GREY TILL HARD 0030
MILTON TOWN (TRAFALG NS 06 009	17 595765 4820914 W	2022/03 7360	2			МО	0020 10	7416247	7416247 (7U9BKNCL) A347282	BRWN FILL 0006 BRWN SILT 0020 GREY TILL SOFT 0030
MILTON TOWN (TRAFALG NS 06 009	17 596176 4821225 W	2022/03 7360	2			МО	0020 10	7416246	7416246 (P5ILX9AR) A345754	BRWN FILL 0006 BRWN SILT 0020 GREY TILL SOFT 0030
MILTON TOWN (TRAFALG NS 06 009	17 595964 4821373 W	1969/06 3637	30	FR 0023 FR 0038	15///:	DO		2803180	2803180 ()	BRWN LOAM 0001 BRWN CLAY 0009 GREY CLAY STNS 0041 BRWN CLAY 0046
MILTON TOWN (TRAFALG NS 06 009	17 595960 4821300 W	1953/08 1642	6 6	SA	18/18/2/:	NU		2802598	2802598 () A	PRDG 0021 CLAY 0050 RED SHLE 0073
MILTON TOWN (TRAFALG NS 06 010	17 595649 4821612 W	1991/04 1660	6 6	SA 0083	18/85/4/2 :0	DO		2808031	2808031 (43800)	BLCK LOAM 0002 BRWN CLAY 0019 BRWN SAND 0031 BRWN SAND GRVL 0065 GREY CLAY 0072 RED SHLE SOFT 0076 RED_SHLE HARD 0090
MILTON TOWN (TRAFALG NS 06 010	17 595414 4821934 W	1992/05 4868	36 30	FR 0029 FR 0062	22/40/10/ 4:30	IR	0020 40	2807993	2807993 (103911)	BRWN LOAM SOFT 0001 BRWN SAND SOFT 0003 GREY CLAY STNS FSND 0029 GREY SILT FSND SOFT 0030 BRWN CLAY SAND 0052 GREY CLAY STNS FSND 0056 RED CLAY SAND HARD 0062 RED GRVL BLDR HARD 0064
MILTON TOWN (TRAFALG NS 06 010	17 595530 4821751 W	1993/10 4005	6					2808206	2808206 (124445) A	BRWN CLAY SAND LOOS 0008 BRWN CLAY 0021 BRWN CLAY SAND LOOS 0053 BRWN SAND GRVL LOOS 0054 RED CLAY 0055 RED SHLE HARD 0055
MILTON TOWN (TRAFALG NS 06 010	17 595562 4821731 W	1993/10 4005	6	UK 0083	10/83/2/0 :30			2808205	2808205 (124443)	BRWN CLAY LOOS 0014 BRWN CLAY SAND LOOS 0055 RED SHLE 0058 RED SHLE HARD 0085

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	Well ID Only	WELL	FORMATION
MILTON TOWN (TRAFALG NS 06 010	17 594691 4820886 W	2008/12 1660	6.25 6	FR 0040 FR 0055	2/5/5/1:0	DO		7119198	7119198 (Z89723) A059939	BRWN CLAY 0024 BRWN CLAY SAND GRVL 0026 RED_SHLE HARD 0061
MILTON TOWN (TRAFALG NS 06 010	17 595590 4821662 W	1960/08 3514	5	SA 0085	35/50/15/ :	NU		2802601	2802601 () A	PRDG 0028 BLUE CLAY SILT 0082 RED SHLE 0085
MILTON TOWN (TRAFALG NS 06 010	17 594752 4820933 W	1965/01 1308	30	FR 0027	18//1/:	DO		2802603	2802603 ()	LOAM 0002 BRWN CLAY MSND 0009 RED CLAY 0020 RED MSND CLAY 0027 MSND 0028
MILTON TOWN (TRAFALG NS 06 010	17 595376 4822023 W	1953/06 1642	6	FR 0048	18//1/:	DO		2802599	2802599 ()	CLAY MSND 0048
MILTON TOWN (TRAFALG NS 06 010	17 595262 4820925 W	1965/07 1307	30	FR 0043	20//1/:	CO IR		2802597	2802597 ()	BRWN LOAM CLAY 0015 RED CLAY 0041 CSND 0043 RED SHLE 0044
MILTON TOWN (TRAFALG NS 06 010	17 595312 4821952 W	1959/08 1718	7	FR 0060	20/25/8/8 :0	DO		2802600	2802600 ()	LOAM 0001 LOAM MSND 0006 YLLW CLAY 0051 QSND 0057 GRVL 0060
MILTON TOWN (TRAFALG NS 06 010	17 594648 4820905 W	1963/05 1308	30	FR 0023	6/24/2/1: 0	DO		2802602	2802602 ()	BRWN CLAY MSND 0006 RED CLAY MSND BLDR 0020 RED SHLE 0025
MILTON TOWN (TRAFALG NS 06 011	17 595119 4821774 W	1986/08 4005	4	FR 0063	32/85/4/2 :0	IR PS		2806503	2806503 (00257)	BRWN CLAY GRVL LOOS 0017 GREY CLAY LOOS 0025 GREY CLAY GRVL LOOS 0038 BRWN SAND GRVL LOOS 0044 BRWN CLAY GRVL LOOS 0059 GREY SAND LOOS 0061 RED CLAY FGVL HARD 0066 RED SHLE HARD 0090
MILTON TOWN (TRAFALG NS 06 011	17 594764 4821313 W	1971/03 3637	30	FR 0028	10/30//2: 0	DO		2803736	2803736 ()	BRWN LOAM 0001 BRWN CLAY 0003 GREY CLAY 0005 BRWN CLAY 0013 GREY CLAY 0018 BRWN STNS 0024 RED CLAY STNS 0032
MILTON TOWN (TRAFALG NS 06 011	17 595084 4822113 W	1995/09 3030	36	FR 0012 FR 0025 FR 0040	12///:	DO		2808399	2808399 (158461)	BRWN LOAM 0001 BRWN CLAY SNDY 0012 BLUE CLAY STNS 0025 GREY FSND 0031 BLUE CLAY STNS 0042
MILTON TOWN (TRAFALG NS 06 011	17 594774 4821739 L	1998/02 1660	66	FR 0050	24/48/6/3 :0	DO		2808919	2808919 (192161)	BLCK LOAM 0002 BRWN CLAY 0017 BRWN CLAY GRVL 0026 RED CLAY 0030 RED SHLE 0055

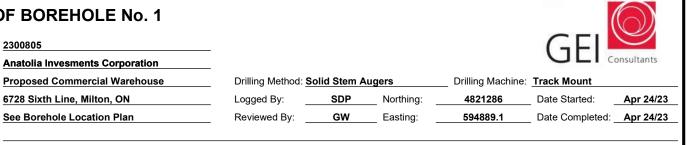
TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	Well ID Only	WELL	FORMATION
MILTON TOWN (TRAFALG NS 06 011	17 595080 4822112 W	1995/09 3132		FR 0035 FR 0093	45//0/:	NU		2808393	2808393 (159779) A	BRWN LOAM SOFT 0002 BRWN CLAY STNS DNSE 0008 BLUE CLAY STNS DNSE 0030 BLUE CLAY STNS SOFT 0035 BLUE CLAY STNS DNSE 0045 RED CLAY DNSE 0063 BLUE CLAY DNSE 0069 RED SHLE HARD 0130
MILTON TOWN (TRAFALG NS 06 011	17 595096 4822112 W	1995/08 3132	6 6	SA 0087	22//6/:	DO NU		2808394	2808394 (159777) A	BRWN LOAM SOFT 0002 BRWN CLAY STNS DNSE 0005 BLUE CLAY STNS DNSE 0030 BLUE CLAY STNS SOFT 0033 BLUE CLAY STNS DNSE 0052 RED CLAY STNS DNSE 0058 BLUE CLAY STNS DNSE 0087 RED SHLE HARD 0170
MILTON TOWN (TRAFALG NS 06 011	17 594586 4821735 W	2020/07 7230						7370388	7370388 (C47954) A297427 P	
MILTON TOWN (TRAFALG NS 06 011	17 594582 4821360 W	2021/09 7472						7400610	7400610 (JW2SRBWI) _NO_TAG A	
MILTON TOWN (TRAFALG NS 06 011	17 594540 4821312 W	2021/09 7472						7400609	7400609 (K82RF38S) _NO_TAG A	
MILTON TOWN (TRAFALG NS 06 011	17 594821 4821404 W	2018/05 3108						7316029	7316029 (Z265282) A	
MILTON TOWN (TRAFALG NS 06 011	17 594746 4821486 W	2021/09 7472						7400611	7400611 (RCOS8J3P) A308318 A	
MILTON TOWN (TRAFALG NS 06 011	17 594672 4821358 W	2021/09 7472						7400612	7400612 (XZT9DPS2) _NO_TAG A	
MILTON TOWN (TRAFALG NS 06 011	17 594444 4821342 W	2021/09 7472						7400613	7400613 (J62A2B38) _NO_TAG A	
MILTON TOWN (TRAFALG NS 06 011	17 594442 4821490 W	2021/09 7472						7400614	7400614 (Z9FBGEFJ) _NO_TAG A	
MILTON TOWN (TRAFALG NS 06 011	17 594720 4821500 W	2020/11 7472	2			МО	0010 10	7375667	7375667 (UF88ZRGP) A308318	GREY CLAY PCKD 0020
MILTON TOWN (TRAFALG NS 06 011	17 595257 4821932 W	2021/09 7282	2			мо	0018 10	7404950	7404950 (IDPAA39F) A337710	OBDN 0028

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	Well ID Only	WELL	FORMATION
MILTON TOWN (TRAFALG NS 06 011	17 594425 4821138 W	2021/09 7472						7400616	7400616 (MNYMTTWR) _NO_TAG A	
MILTON TOWN (TRAFALG NS 06 011	17 594395 4821438 W	2021/09 7472						7400615	7400615 (HT4JKRN5) _NO_TAG A	
MILTON TOWN (TRAFALG NS 06 011	17 595267 4821992 W	2022/05 7472	2			МО	0010 10	7421168	7421168 (NIL3SSKZ) A351011	BRWN SAND LOAM LOOS 0004 GREY CLAY TILL PCKD 0020
MILTON TOWN (TRAFALG NS 06 011	17 594961 4822031 W	2022/05 7472	2			МО	0010 10	7421166	7421166 (QAWEZXD4) A351029	BRWN SAND LOAM LOOS 0004 GREY CLAY FILL PCKD 0020
MILTON TOWN (TRAFALG NS 06 011	17 595129 4821839 W	2022/05 7472	2			МО	0010 10	7421169	7421169 (R9PC8ZRW) A348392	BRWN SAND LOAM LOOS 0004 GREY CLAY TILL PCKD 0020
MILTON TOWN (TRAFALG NS 06 011	17 595138 4822057 W	2022/05 7472	2			МО	0010 10	7421167	7421167 (E9UA2TKX) A351009	BRWN SAND LOAM LOOS 0004 GREY CLAY TILL PCKD 0020
MILTON TOWN (TRAFALG NS 06 011	17 594770 4821478 W	1966/06 1308	30	FR 0030	10/28/2/0 :30	ST DO		2802604	2802604 ()	LOAM 0002 BRWN CLAY BLDR 0006 BRWN CLAY 0009 BLUE CLAY 0021 MSND BLDR 0029 RED SHLE 0030
MILTON TOWN (TRAFALG NS 06 012	17 594844 4822470 W	1989/06 4868	30 30	FR 0045	15/25/5/1 :0	DO		2807318	2807318 (41638)	BRWN LOAM LOOS 0001 BRWN CLAY FSND 0006 GREY CLAY SILT FSND 0031 GREY CLAY FSND 0032 GREY CLAY FSND 0042 RED CLAY FSND 0045 BRWN SAND GRVL LOOS 0049 RED SHLE HARD 0051
MILTON TOWN (TRAFALG NS 07 008	17 596342 4821226 W	1955/10 1642	6 6	FR 0066	18/65/5/1 :0	DO		2802631	2802631 ()	LOAM MSND 0008 BLUE CLAY 0028 MSND STNS CLAY 0060 RED SHLE 0069
MILTON TOWN (TRAFALG NS 07 009	17 595949 4821667 W	1997/11 2576	6	FR 0053	19//10/4: 0	DO	0053 4	2808624	2808624 (185741)	LOAM 0002 BRWN CLAY 0018 GREY CLAY FGVL 0048 GREY GRVL CLAY 0052 BLUE GRVL FSND 0057
MILTON TOWN (TRAFALG NS 07 009	17 596124 4821589 W	1959/10 1718	7	FR 0055	24/50/4/9 6:0	ST DO		2802633	2802633 ()	LOAM 0001 YLLW CLAY 0004 FSND 0007 YLLW CLAY 0040 FSND 0050 SILT 0054 FSND 0055 GRVL 0060 RED CLAY 0061
MILTON TOWN (TRAFALG NS 07 010	17 595827 4821912 W	1985/04 4005	6	FR 0059	16/30/8/2 :30	DO		2806291	2806291 ()	BRWN CLAY LOOS 0012 GREY CLAY LOOS 0029 GREY SAND GRVL LOOS 0030 GREY CLAY LOOS 0058 GREY GRVL SAND LOOS 0059

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER		WELL USE	SCREEN	Well ID Only	WELL	FORMATION
MILTON TOWN (TRAFALG NS 07 010	17 595604 4822061 W	1971/08 3637	30	FR 0005 FR 0024	4/26/30/0 :25	IR		2803752	2803752 ()	BLCK LOAM 0001 GREY CLAY 0006 GREY CLAY BLDR MSND 0026
MILTON TOWN (TRAFALG NS 07 010	17 595818 4821883 W	1992/04 3030	36	FR 0005 FR 0010 FR 0016 FR 0030	10///:	DO		2807985	2807985 (093638)	LOAM 0001 BRWN CLAY SNDY 0005 BRWN FSND WBRG 0006 BRWN CLAY 0010 BLUE SILT 0016 RED CLAY SAND LYRD 0023 BLUE SILT STNS 0030 GREY SAND GRVL 0032 RED CLAY 0035
MILTON TOWN (TRAFALG NS 07 011	17 595350 4822140 W	1972/09 3637	30	FR 0026 FR 0055	20/55/4/2 :0	DO		2804053	2804053 ()	BRWN SAND 0003 BRWN CLAY 0008 BLUE CLAY 0009 GREY CLAY SAND 0015 BRWN CLAY 0021 BLUE CLAY 0026 BRWN CSND 0027 GREY CLAY STNS 0053 BLUE CLAY 0055 BRWN MSND 0056
MILTON TOWN (TRAFALG NS 07 011	17 595722 4822522 W	1998/05 3030	36	UK 0005 UK 0015 UK 0024 UK 0037		DO		2808753	2808753 (185410)	BRWN LOAM 0001 BRWN CLAY SNDY 0004 BRWN SAND GRVL 0006 GREY SILT 0024 BRWN SAND 0030 GREY CLAY STNS 0037
MILTON TOWN (TRAFALG NS 07 011	17 595554 4822344 W	2021/09 7282	2			МО	0020 10	7404949	7404949 (MK5A8JLN) A337709	OBDN 0030
MILTON TOWN (TRAFALG NS 07 011	17 595704 4822556 W	1964/08 1307	30	FR 0040	15//2/:	DO		2802638	2802638 ()	BRWN LOAM 0002 BRWN CSND 0006 BRWN CLAY 0012 GREY CLAY 0038 MSND 0040

Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 17, 2024

Borehole Logs


Project Number:

Project Client:

Project Name:

Project Location:

Drilling Location:

	LITHOLOGY PROFILE									co	MMENT	s						
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	Shear Strength Testing (k X Other Test + Pocket Penetrometer ▲ Field Vane (Intact) △ Field Vane (Remolded) 40 80 120 Penetration Testing	Pa) 160	🔺 Cor	mbustible al Organ	e Orgar ic Vapo 30	nic Vapou nic Vapou pur (ppm) 00 40	ır (%LEL)	Instrumentation Installation	GR	& AIN SIZ RIBUTI (%)	E
Litho	0.0 102.2	Sam	Sam	Reco	SPT			O SPT ● DCPT 10 20 30	40		Water C 20	ontent 3	(%) 0 4	0		GR S	A SI	CL
	TOPSOIL: 75 mm CLAY AND SILT: Some sand, trace	SS	1	60	6	0	- 192	Q 6 \				0 24						
	gravel, firm to very stiff, brown, moist	SS	2	100	15	-	-	150			17 0				<u>T</u>			
		SS	3	90	19			19 0			14 0							
H	2.4 189.9 CANDX OUT: Trace provide compared	SS	4	100	29	2-	- 190	29 Q			2	2				First Wat	er Strike	SS4
	SANDY SILT: Trace gravel, compact, 3.0 brown, wet 189.2		4	100	29	-		290										
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	5	100	40		-	40		þ								
	boulders, dense to compact, dark brown, moist					4 —	- 188				_				: :			
		ss	6	15	41			4	10	9								
						-	-		1									
90,00 00,000						6-			/	8								
		SS	7	100	37		- 186	37 9	5	8					\bigotimes			
						-	-								$\langle\!\langle$			
		SS	8	100	27	_		270		10					X			
101192	8.1 184.1 Borehole Terminated at 8.1 m					8-	1								~~~~			
		ı ndwat	er de	n pth en	icount	ered or	n comp	etion of drilling: Dry		L Cave dep	oth afte	er auç	ger rem	noval:	Open			
647	Welham Road Unit 1/	ndwat	er de	pth ob	serve	d on: Ju	un 22/2	at depth of: 1.0 m.	(Groundw	ater El	levati	on: 19	1.2 m				
w١	T : (705) 719-7994 Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Scale.1 :100																	

Project Number:	2300805
Project Client:	Anatolia Invesments Corpora
Project Name:	Proposed Commercial Wareh
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

atolia Invesments Corporation
oposed Commercial Warehouse

Local Benchmark:

oposed Commercial Warehouse
28 Sixth Line, Milton, ON

-____

Drilling Method:	Solid Stem Aug	ers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4821460	Date Started:	Apr 24/23
Reviewed By:	GW	Easting:	595031.6	Date Completed:	Apr 24/23

	LITHOLOGY PROFILE	SO	IL SA	MPL	ING							L	AB TES	TING			С	ОММ		3
jy Plot	DESCRIPTION	: Type	Sample Number	ry (%)	SPT "N" Value	(m)	ELEVATION (m)	X Other + Pock	Strength To Test t Penetrom Vane (Intact Vane (Remo 80	eter)	a) 60	▲ Comb	ustible Orga ustible Orga Organic Vap 200 3 Atterberg Lir	nic Vapo our (ppm 300 4	ur (%LEL	Instrumentation Installation	G	8 RAIN STRIE		E
Lithology Plot	0.0 191	sample Type	Sample	Recovery (%)	SPT "N	DEPTH (m)	ELEVA	F O SPT 10	enetration T DO 20	0		PL -	ater Content		LL 40	Instrum Installat	GR	SA	SI	CL
	0.2 TOPSOIL: 150 mm CLAY AND SILT: Some sand, trace	ss	1	85	6	0	-	0 6				0								
	gravel, firm to very stiff, brown, mois	SS	2	100	19	-	- 190		90				18 O			<u> </u>				
		SS	3	100	17			17	لم				20				4	13	48	35
	2.3 188 SANDY SILT GLACIAL TILL: Some	SS	4	100	34	2-	}			34°O,		10				•				
	clay, trace gravel, inferred cobbles an boulders, dense, brown, moist to we		5	100	46	-	- 188			<u>`</u>	460									
				100	-10	4-					/						First V	Vater \$	Strike	SS5
	Gravelly sand seam					4	-			į	/	10								
	5.0 186 Borehole Terminated at 5.0 m	.2 SS	6	75	34					34 Ó						\mathbb{N}				
		undwa	ter de	pth en	ncount	ered or	n compl	etion of d	: illing: Dr	У _	Ċ	Cave depth	after au	ger rer	noval:	Open				
	arrie, Ontario L4N 0B7							3 at depth				Groundwat								
w	T : (705) 719-7994 ww.geiconsultants.com commissioned	chnical	enginee	er. Also,	boreho	le inform	ation sho	uld be read i	otential co i conjunctio	on with th	e geot	echnical report	for which i	assistan t was	ice from				1 :100 1 of 1	

Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

	natolia Invesments Corporation	
oposed Commercial Warehouse	oposed Commercial Warehouse	

Local Benchmark:

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821210 Date Started: Apr 24/23
 Reviewed By:
 GW
 Easting:
 594968.5
 Date Completed:
 Apr 24/23

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				DTESTIN			LAB	TES	TING			C	ОММЕ	NTS
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	 X Other Tes + Pocket Pe ▲ Field Van △ Field Van 40 8 	e (Intact) (Remolded)	<u>160</u> 40	A C ♦ T	ombustik otal Orga 00 20 Atter Water	ole Orgar anic Vapo 0030 berg Lim Content	iits (%)	ır (%LEL)	Instrumentation Installation	G	& RAIN \$ TRIBL (%)	SIZE JTION
*	8.9 192.1 191.9 ► TOPSOIL: 125 mm 191.9 ► FILL: Clayey silt, some sand, trace	SS	1	85	5	0	192	05	0 00			0						1	
ĬĬĬ	0.8 organics, firm, brown, moist ^{191.3} CLAYEY SILT: Some sand, trace	SS	2	100	9	-	-	90				1.5	24 〇						
	gravel, stiff, brown, moist	SS	3	100	14			۱4 کر				15 O							
	2.3 189.8 SANDY SILT GLACIAL TILL: Some	SS	4	100	25	2-	- 190		25 Q		70						First W	ater Str	rike SS4
	clay, trace gravel, inferred cobbles and boulders, compact to dense, brown,					-	-	4	N			0							
	wet to moist	SS	5	100	32				32 O)							
8						4 —	- 188		/										
	Some gravel, brownish grey	SS	6	100	24	-	-	2	40		9 C								
000									, , ,										
		SS	7	100	19	6-	- 186	19 ¢	/		1	0							
200 200 200 200 200 200 200 200 200 200						-	-												
		SS	8	100	16	Ţ	Z	 16 ॑			1	0							
해比	8.1 183.9 Borehole Terminated at 8.1 m			100	10	8-	 184					, 							
		ı ıdwat	er de	oth en	count	tered or	ו comn	etion of drillir	ia: 7.6 m		L Cave de	epth af	ter au	l Jer ren	noval: (Open	I		
647	7 Welham Road, Unit 14								.9. 7.0 11.		Ground	-	-	-		~ P 0 11			
Ba	T : (705) 719-7994 Borehole details p	oresente	ed do n	ot cons	titute a	thorough				ns present a	and requi	re interp	retative	assistan	ce from			Scale:1	:100
W	ww.geiconsultants.com a qualified geotec commissioned an								njunction with	n the geoteo	chnical re	port for	which it	was					

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

atolia Invesments Corporation	
posed Commercial Warehouse	

d Commercial Warehouse	Drilling
h Line, Milton, ON	Logged

Drilling Method:	Solid Stem Aug	ers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4821304	Date Started:	Apr 24/23
Reviewed By:	GW	Easting:	594968.5	Date Completed:	Apr 24/23

	LITHOLOGY PROFILE	SO	L SA	MPL	ING				D TESTIN			LAB	TES	TING			C	омм	FNT	s
gy Plot	DESCRIPTION	e Type	Sample Number	Recovery (%)	SPT "N" Value	H (m)	ELEVATION (m)	 X Other Tes + Pocket Pe ▲ Field Van 	enetrometer	<u>k</u> Pa) 160		1	ble Orgar anic Vapo	nic Vapou our (ppm) 00 40	ır (%LEL)	Instrumentation Installation	G	8 RAIN STRIE (%	I SIZI BUTIC	Ξ
Lithology Plot	0.0 191 5	Sample Type	Sample	Recove	SPT "N	DEPTH (m)	ELEVA	O SPT	tration Testing DCPT 20 30	40			Content		- LL ю	Instrum Installa	GR	SA	SI	CL
	BD 191.5 TOPSOIL: 150 mm 191.4 FILL: Clayey silt, some sand, trace 191.4	SS	1	60	6	0	-	6					0 22							•
	0.8 gravel, firm, grey, moist 190.8 CLAYEY SILT: Some sand, trace	SS	2	100	18	-	-	180				16 0					First V	Vater S	Strike	SS2
	gravel, very stiff, brown, wet	SS	3	100	20		- 190	20 0	2			14 O								
	2.3 189.3 SANDY SILT GLACIAL TILL: Trace	SS	4	65	48	2-]			4 8 C	,	12 O								
	clay, trace gravel, inferred cobbles and boulders, dense to compact, brown, moist to wet	SS	5	100	47					ا 47		0								
	most to wet			100		4 —	- 188													
						-	-				g									
	5.0 186.5 Borehole Terminated at 5.0 m	SS	6	100	25				25 Ú		C									
		ndwat	er dep	oth en	icount	ered o	n compl	etion of drilli	ng: Dry		L Cave d	epth af	ter au	ger ren	noval: (Open				
	Y Welham Road, Unit 14 Arrie, Ontario L4N 0B7							ada at 1	-41-1		Ground				6-					
W	T : (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned ar	chnical e	enginee	r. Also,	boreho	le inform	ation sho	uld be read in co							ce rrom			Scale: Page:		

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

atolia Invesments Corporation	
oposed Commercial Warehouse	

Project Name:	Proposed Commercial Warehouse	Drilling Method: Ho	low Stem A	ugers	Drilling Machine:	Track Mount	
Project Location:	6728 Sixth Line, Milton, ON	Logged By:	SDP	Northing:	4821393	Date Started:	Apr 21/23
Drilling Location:	See Borehole Location Plan	Reviewed By:	GW	Easting:	595046.6	Date Completed:	Apr 21/23
Local Benchmark:							

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING			FIEL					LAB	TES	TING			0	омм	ENTS	\$
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	(m) H	ELEVATION (m)	Shear Stre X Other Tes + Pocket Pe ▲ Field Vane 40 8	t netromet e (Intact) e (Remole 0 12	er ded) 20 16		▲ C ◇ T 10	otal Orga)0 20	ole Organ anic Vapo	nic Vapou our (ppm) 00 40	ur (%LEL))	Instrumentation Installation	GF	& RAIN	SIZE UTIC	E
Litholo	6.9 196.6	Sample	Sample	Recove	SPT "N	DEPTH (m)	ELEV	Penel O SPT 10 2	ration Te: DCF 0 3	РТ	0			Content		⊣ .∟ ю	Instrun Installa	GR	SA	SI	CL
	TOPSOIL: 75 mm FILL: Clayey silt, some sand, trace	SS	1	75	10	0	- 190	0			-		0 18								
	^{0.8} organics, stiff, brown, wet ^{189.8} CLAYEY SILT: Some sand, trace	SS	2	80	13		100	130					18 O					First Wa	ater S	trike S	SS2
	gravel, stiff, brown, moist to wet	SS	3	85	13		-	130						27 O							
	2.3 188.3 SANDY SILT GLACIAL TILL: Some	SS	4	90	33	2-	- 188		33	R		1	0								
	clay, trace to some gravel, inferred cobbles and boulders, dense, brown to brownish grey, moist	SS	5	85	43	7	Z			43	0	9									
	brownion groy, molec					<u>(</u>					[
							- 186			/		7									
씲녮	5.0 185.6 Borehole Terminated at 5.0 m	SS	6	100	38					38 Ó		0									
		ndwat	er dep	oth er	ncount	tered o	n compl	etion of drillir	ng: 3.0	m.	$\overline{\bigcirc}$	L Cave de	epth af	ter auę	ger ren	noval: :	3.9 m.				
647	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7	ndwat	er dep	oth ob	serve	ed on:					6	Ground	water I	Elevati	on:						
w	ww.geiconsultants.com a qualified geoted	Sorehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Page: 1 of 1																			

Date Completed: Apr 24/23

Apr 24/23

Date Started:

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount

4821393

595061.7

SDP Northing:

Reviewed By: ____ Easting: ___

Project Number:	2300805
Project Client:	Anatolia Inv
Project Name:	Proposed C
Project Location:	6728 Sixth
Drilling Location:	See Boreho

vesments Corporation Commercial Warehouse

Line, Milton, ON ole Location Plan

Local Benchmark

	LITHOLOGY PROFILE	SOI	LSA	MPL	ING			FIELD TES Shear Strength Tes			AB TESTING	;]	Ī	cc	MMEN	тѕ			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	X Other Test Pocket Penetromet Field Vane (Intact) G Field Vane (Remote) 40 80 12 Penetration Te O SPT ● DCF	er 16d) 160 160 sting PT	▲ Comi	bustible Organic Vap organic Vapour (pp 200 300 Atterberg Limits Vater Content (%)	our (%LEL)	Instrumentation Installation	GF DIS	& RAIN SI TRIBUT (%)	ZE TION			
- %	0.0 191.3 0.2 TOPSOIL: 150 mm	ss	1	85	5	0	<u> </u>		<u>0 40</u>	10	20 30	40							
\bigotimes	FILL: Clayey silt, some sand, trace		1	00	5			0 5 \			0 22 20								
	CLAYEY SILT: Some sand, trace gravel, stiff to very stiff, brown, moist	SS	2	100	12	-	- 190												
	gravel, sun to very sun, brown, moist	SS	3	100	19		150	19 0.			17								
	2.3 189.0					2 -	-	`	`	13	3			Eirot \//	ater Strik	0 884			
6月 1月 1月	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	4	100	41				410	0				FIISLAVA		6 334			
	boulders, dense to compcat, brown to brownish grey, wet to moist	SS	5	100	40	-	- 188		40,	9 0									
									/										
2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5		SS 6 100 23																	
010																			
						6 —		i											
		SS	7	100	22	_	-	22 0											
						-													
						7	- 184 Z	Ň											
LL LL	Some gravel 8.1 183.2	SS	8	100	28	8-													
		 ndwat	er der	oth en	count	ered or	1 compl	etion of drilling: 7.6		L lave dent	h after auger re	moval: (Open						
647	GEI CONSULTANTS 7 Welham Road, Unit 14 arrie, Ontario L4N 0B7		-					e. a.ming. 7.0		-	ter Elevation:		- 6-211						
	T: (705) 719-7994 ww.geiconsultants.com a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Scale:1:100 Page: 1 of 1																		

Logged By:

Project Number:	2300805
Project Client:	Anatolia Invesments
Project Name:	Proposed Commerci
Project Location:	6728 Sixth Line, Milt
Drilling Location:	See Borehole Locati

atolia Invesments Corporation
posed Commercial Warehouse
28 Sixth Line, Milton, ON

Scorporation				
ial Warehouse	Drilling Method:	Hollow Stem A	ugers	
ton, ON	Logged By:	SDP	Northing:	
ion Plan	Reviewed By:	GW	Easting:	

ethod:	Hollow Stem A	ugers	Drilling Machine:	Track Mount	
y:	SDP	Northing:	4821327	Date Started:	Apr 25/23
By:	GW	Easting:	595205.4	Date Completed:	Apr 25/23

	LITHOLOGY PROFILE	SO	L SA	MPL	ING		FIELD TESTING LAB TESTING C											
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)	 X Other Test + Pocket Pene ▲ Field Vane (△ Field Vane (40 80 	etrometer (Intact)	Combu	stible Organic Vap stible Organic Vap rganic Vapour (pp 200 300 terberg Limits	our (%LEL)	Instrumentation Installation	G	& GRAIN SIZE DISTRIBUTION (%)				
Lithol	0.0 190.3	Samp	Samp	Reco	SPT	DEP1		DCPT 30 40		er Content (%) 20 30	40	Instru Instal	GR	SA S	SI CL			
***	0.0 0.2 TOPSOIL: 150 mm	ss	1	75	10	0 - 190	0 110 110	30 40			40		I					
	FILL: Clayey silt, some sand, trace organics, stiff, brown, moist CLAYEY SILT: Some sand, stiff,	SS	2	100	13	_	110 13 0			0 30 19 0								
	greyish brown, moist	SS	3	100	13	-	130			27								
	2.3 188.0					2-			6									
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	4	100	33	100		330	6 0									
	boulders, dense, dark brown, moist	SS	5	100	43	Ŧ		430	9									
						4		//										
	Wet 5.0 185.3	SS	6	65	38			380	11 0				First W	ater Stri	ke SS6			
1 11 1561	Borehole Terminated at 5.0 m					4							_9	-				
		ndwat	er de	pth en	count	ered on compl	etion of drilling	j: 3.2 m (Cave depth	after auger re	moval:	Open						
	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7	ndwat	er de	pth ob	serve	d on:		(Groundwate	r Elevation:								
	T : (705) 719-7994 www.geiconsultants.com a qualified geotec	rehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from ualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was mmissioned and the accompanying 'Explanation of Boring Log'. Scale 1 :100																

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

Local Benchmark:

osed Commercial Warehouse	
Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount SDP Northing: 4821074 Date Started: Logged By: Apr 27/23
 Reviewed By:
 GW
 Easting:
 595147.5
 Date Completed:
 Apr 27/23

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING					D TES				LAB	TES	TING				OMM		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× 0 + F ▲ F △ F	Other Tes Pocket Pe Field Van O 8 Pene	enetrome e (Intact) e (Remol	ter ded) 20 1	a) 60	I ▲ (Combusti Total Org 00 2 Atte	ble Orgar ble Orgar anic Vapo 00 30 rrberg Lim	nic Vapou our (ppm) 00 40	r (%LEL)	Instrumentation Installation	G	8 RAIN STRIE	k I SIZE	E
⊡ XXX	8.0 188.4 \ TOPSOIL: 75 mm			₽2 75		<u> </u>	<u> </u>	1	0 2			10 :		10 2 	<u>20 3</u>	<u>0 4</u>	0	드드				
*	FILL: Clayey silt, some sand, firm, bit fills: Clayey silt, some sand, firm, bit fills: Clayey silt, some sand, firm, 189.7	- 55	1	75	7	-	- 190	0 7\	Ì.						20							
	CLAYEY SILT: Some sand, stiff, brown 1.5 moist 189.0	, SS	2	100	14	-		1	40					15 0								
	SANDY SILT GLACIAL TILL: Some clay, inferred cobbles and boulders,	SS	3	100	28	2-				28 Q	\ \				23 〇				First V	Vater \$	Strike	SS3
	compact to dense, brown, wet to moist	SS	4	100	38	-	- 188				380		1									
			_	400		-				.	/			2								
		SS	5	100	28		-			28 0 /				1								
						4 —				/												
		SS	6	100	23		- 186		23	30			1	llo Ə								
98. 19							-		,	/												
	6.1 184.4 CLAYEY SANDY SILT GLACIAL TILL:		_			6-			/					15 0								
	Trace gravel, inferred cobbles and boulders, compact to dense, brown to	SS	7	100	16		- 184		16 Á (1	22	55	22
	brownish grey, moist					- _	Z															
	8.1 182.4	SS	8	100	43	8-					4:	30										
	Borehole Terminated at 8.1 m																					
	GEI CONSULTANTS GEI CONSULTANTS	l ndwat	er de	l pth en	l Icoun	tered or	n compl	etion c	f drillir	: ng: 7.4	: m.	: (Cave d	l epth a	l fter aud	l ger ren	noval: (Open				
647	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7			-									Ground					·				
	T : (705) 719-7994 www.geiconsultants.com a qualified geotec	hnical e	enginee	er. Also,	boreho	ole inform	ation sho	uld be re									ce from			Scale		
	commissioned an	A qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Page: 1 of 1																				

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

Local Benchmark:

posed Commercial Warehouse	
8 Sixth Line, Milton, ON	

Drilling Method: Hollow Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821164 Date Started: Apr 27/23 Reviewed By: ____ Easting: ____ 595225.7 Date Completed: Apr 27/23

LITHOLOGY PROFILE SOIL SAMPLING					FIELD TESTING Shear Strength Testing (RPa)									IENT	s							
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	H (m)	ELEVATION (m)	× 0 + P¢ ▲ Fi	ther Tes ocket Pe eld Vane eld Vane 8 8	t netrome e (Intact) e (Remol 0 12	ter ded) 20 10	a) 60		Combusti Total Org 00 2	ble Orgar ble Orgar anic Vapo 00 30 rberg Lim	nic Vapou pur (ppm) 00 40	ur (%LEL)) 00	Instrumentation Installation	G	ع RAII STRII	& N SIZ	E
	0.0 190.4	Sampl	Sampl	Recov	SPT "	DEPTH (m)	ELEV	0 SI 10	эт	ration Te DCI 0 3		10) Water 10 2	Content 20 3		LL 10	Instrur Installa	GR	SA	SI	CL
		SS	1	90	7	0	- 190	0 7							0 21							
	gravel, firm to very stiff, brown, moist to 1.1 wet 189.3	SS	2	85	17	-	-		170					14 0								
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, compact to very dense,	SS	3	100	23		-		23	م				18 0	8				First V	Vater	Strike	SS3
	brown, moist	SS	4	100	40	2-	- 188				40 0	2	1									
		SS	5	100	51	-						¢51 →										
00000-00 00000-00			0	100	01	4-								Ĭ								
0400-00 0400-00 0400-00						4 —	- 186				/		, ,	9								
-99- 10-1-0	5.0 185.4 Borehole Terminated at 5.0 m	SS	6	65	22				22	0				1								
		ndwat	er dep	oth en	icount	ered or	n comp	etion of	drillin	ig: Dry	: ,		L Cave d	epth at	ı fter auç	ger ren	noval:	Open				
647	′ Welham Road, Unit 14 arrie, Ontario L4N 0B7	ndwat	-												Elevati							
w	T : (705) 719-7994 ww.geiconsultants.com commissioned ar	hnical e	enginee	r. Also,	boreho	le inform	ation sho	uld be rea	all poter Id in coi	ntial con njunctio	ditions p n with th	e geotec	nd requi	ire interp eport for	which it	assistan was	ce from			Scale Page:	1 :10 1 of 1	

Apr 27/23

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

atolia Invesments Corporation	
oposed Commercial Warehouse	

Local Benchmark:

roposed Commercial Warehouse	
728 Sixth Line, Milton, ON	

Drilling Method: Hollow Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821245 Date Started: Reviewed By: <u>GW</u> Easting: <u>595296.6</u> Date Completed: <u>Apr 27/23</u>

LITHOLOGY PROFILE			LSA	MPL	ING	-		FIELD TESTING Shear Strength Testing (kPa)					LAE	B TES	TING			с	COMMENTS				
🕺 🖞 Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	(m) H	ELEVATION (m)		Other Tes Pocket Pe Field Van Field Van	st enetrometer e (Intact) e (Remolded) 30 120		Combust Combust Total Org 100 2 Atte	ible Orgai	nic Vapou pur (ppm) 00 40	Instrumentation Installation	G	& GRAIN SIZE DISTRIBUTION (%)						
Litholo	0.0 190.1	Sampl	Sampl	Recov	SPT "	DEPTH (m)	ELEV	0	SPT	tration Testing DCPT 20 30	40) Wate			- LL ю	Instrur Installa	GR	SA	SI	CL		
×	0.2 TOPSOIL: 205 mm ^{189.9} FILL: Clayey silt, some sand, firm,	SS	1	80	6	0	- 190	Q 6			40			1									
	CLAYEY SILT: Some sand, very stiff,	SS	2	100	16				160				1 18 0	9 3									
	brown, moist Trace gravel								/				12										
	2.3 187.8	SS	3	100	19	2-	- 188		190	2			-										
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	4	100	45						450-		3										
	boulders, dense to very dense, brown, moist	SS	5	100	84		-				084 ⊣		10										
						4_																	
200 000 000 000						4-	- 186						10										
	5.0 185.0 Borehole Terminated at 5.0 m	SS	6	100	35		_			35 O			12 0										
							n compl	etion	of drillir	ng: Dry			depth a			noval: (Open						
	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details p							unding o	f all note	ntial condition			dwater			co from							
w	ww.geiconsultants.com	hnical e	enginee	er. Also,	boreho	ole inform	ation sho	uld be re											Scale: Page: '				

Apr 27/23

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

atolia Invesments Corporation posed Commercial Warehouse

Borehole Location Plan

8 Sixth Line, Milton, ON

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821021 Reviewed By: GW Easting: 595221.8

Date Started: Date Completed: Apr 27/23

	LITHOLOGY PROFILE SOIL SAMPL			ING				TESTING			LAB	TES	TING				соми		s	
ogy Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	 X Other Test + Pocket Per ▲ Field Vane △ Field Vane 40 80 	etrometer (Intact)		🔺 C	ombustil otal Orga 00 20	ble Orgar ble Orgar anic Vapo 00 30 rberg Lim	nic Vapou pur (ppm) 00 4	ur (%LEL)	Instrumentation Installation		GRAII STRI	& N SIZI BUTI(%)	
Lithol	0.0 <u>191.9</u> 0.2 191.0 191.0	Samp	Samp	Reco	SPT '	DEP1	ELEV		DCPT				Content			Instru Instal	GR	SA	SI	CL
	TOPSOIL: 150 mm ^{191.7} FILL: Clayey silt, Some sand, trace	SS	1	80	7	0		07				0 14								
	organics, firm, brown, moist ^{191.1} CLAYEY SILT: Some sand, trace	SS	2	100	18	-	-	180				16 O								
	gravel, very stiff, brown, moist	SS	3	100	21		- 190	21				13 ○					4	17	47	32
						2-	130						25				First	Water	Strike	SS4
	2.6 189.3 SILT AND SAND: Trace clay, compact,	SS	4	100	19	_	-	19 Q									i not	T ator	ounto	001
	brown, wet	SS	5	100	28				280			4	21 0							
or the second	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, compact, brownish grey,					4 —	- 188		/											
	moist	SS	6	100	20	_	-	20 $\stackrel{\frown}{\gamma}$			9 0									
								l												
						6 —	- 186	1				12 O								
		SS	7	100	18			18 ¢				0								
						- 	- Z													
		SS	8	100	19	-	- - 184	19 ପ				1 1 D								
<u> । । য</u>	8.1 183.8 Borehole Terminated at 8.1 m					8-														
	i																			
		ndwat	er de	oth en	icount	ered or	n compl	etion of drilling	g: 7.3 m(_ c	ave de	epth af	ter au	ger rer	noval:	Open				
	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7							address of the day	N-1 4***		Ground									
w	F: (705) 719-7994 Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying "Explanation of Boring Log". Scale 1 :100 Page: 1 of 1																			

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

atolia Invesments Corporation

Borehole Location Plan

Local Benchmark:

Proposed Commercial Warehouse
6728 Sixth Line, Milton, ON

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount SDP Northing: Logged By: 4821109 Date Started: Apr 27/23 _____
 Reviewed By:
 GW
 Easting:
 595294.3
 Date Completed:
 Apr 27/23

LITHOLOGY PROFILE SOIL SAMPLING				ING						TING			LAB	TES	TING			C	омм	ENT	\$	
E Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	X Of + Po ▲ Fin	ther Tes ocket Pe eld Van eld Van 8 Penet	t enetrome e (Intact) e (Remol	ded) 20 16 esting				ble Orgar	nic Vapou our (ppm) 00 4	ur (%LEL)	Instrumentation Installation	G	8 RAIN STRIE (%	I SIZI BUTIC	E
Lit.	0.0 189.9 0.2 TOPSOIL: 205 mm ^{189.7}		S			_ По Т	Ш	10) 2		<u>60 40</u>)		10 2 1	<u>:0 3</u>		40 	sul Ins	OIX	UA		
\otimes	0.6FILL: Clayey silt, some sand, trage.3	SS	1	65	5			0 5						0								
	gravel, firm, brown, moist CLAYEY SILT: Some sand, trace	SS	2	100	19	-	-		190	2				16 O								
	_{1.5} gravel, very stiff, brown, moist _{188.4}									` \ .				10								
鞩	SANDY SILT GLACIAL TILL: Trace gravel, trace clay, inferred cobbles and	SS	3	100	37	2	- 188				370			12 O								
	boulders, dense to compact, brown to			400	05	-								11 D								
	brownish grey, moist	SS	4	100	35		_				350			Γ								
		SS	5	100	21	-			21	0												
						4 -	- 186															
		SS	6	100	19				19 ८				1	0								
115	5.0 184.9 Borehole Terminated at 5.0 m	33	0	100	19	ł	-		190					Ĭ								
		l ndwat	er dei	l oth en	l Icoun	ered on	compl	etion of	drillir	i na: Drv	: i , i		L Cave d	l epth af	ter aud	l der rer	noval: (Open				
647	GEI CONSULTANTS 7 Welham Road, Unit 14 arrie, Ontario L4N 0B7									5 ,	_	\sim		lwater								
	T : (705) 719-7994 www.geiconsultants.com	hnical e	enginee	r. Also,	boreho	le informa	ation show	uld be rea									ce from			Scale	1 :100)
	commissioned an																			Page:	1 of 1	

(%)

SI

CL

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

natolia Invesments Corporation
oposed Commercial Warehouse
oposed Commercial Warehouse

Local Benchmark:

28 Sixth Line, Milton, ON Log Borehole Location Plan Re

Drilling Method:	Solid Stem Aug	jers	Drilling Machine:	Track Mount			
Logged By:	SDP	Northing:	4821202	Date Started:	Apr 26/23		
Reviewed By:	GW	Easting:	595357.4	Date Completed:	Apr 26/23		

LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING COMMENTS Shear Strength Testing (kPa) \triangle Combustible Organic Vapour (ppm) × Other Test **GRAIN SIZE** Combustible Organic Vapour (%LEL Pocket Penetrometer ELEVATION (m) Instrumentation Installation Sample Numbe Total Organic Vapour (ppm) 100 200 300 400 DISTRIBUTION SPT "N" Value Field Vane (Intact) ithology Plot Type Recovery (%) DESCRIPTION $\overline{\Delta}$ Field Vane (Remolded) 40 80 120 DEPTH (m) 160 Atterberg Limits Sample Penetration Testing PL LL Water Content (%) GR SA 0 SPT DCPT TOPSOIL: 50 mm SS 1 75 6 190 0 27 Q 6 FILL: Sandy clayey silt, firm, brown, very moist **18** O First Water Strike SS2 SS 2 100 17 170 CLAYEY SILT: Some sand, very stiff, brown, moist 18 20 \ SS 3 100 20 2-- 188 14 0 SS 4 100 27 270 187.2 10 SANDY SILT GLACIAL TILL: Some SS 5 100 48 48)0 clay, trace gravel, inferred cobbles and boulders, dense to compact, brown to bronwish grey, moist 186 11 SS 6 100 23 23 Ó 9 1 <u>5.0</u> 185.3 Borehole Terminated at 5.0 m

GEI CONSULTANTS 647 Welham Road, Unit 14 Barrie, Ontario L4N 0B7 T: (705) 719-7994 www.geiconsultants.com

V

Ţ Groundwater depth encountered on completion of drilling: Dry

Cave depth after auger removal: Open

Groundwater depth observed on: Jun 22/23 at depth of: 1.4 m. Groundwater Elevation: 188.9 m Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.

Scale:1 :100 Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore
I s s s l D s s s ls s s s s s	

Anatolia Invesments Corporation
Proposed Commercial Warehouse
· · ·

67 See Borehole Location Plan

oposed Commercial Warehouse
28 Sixth Line, Milton, ON

Drilling Method:	Solid Stem Aug	jers	Drilling Machine:	Track Mount		
Logged By:	SDP	Northing:	4821572	Date Started:	May 1/23	
Reviewed By:	GW	Easting:	595174.6	Date Completed:	May 1/23	

	LITHOLOGY PROFILE	SOIL SAMPLING			ING		FIELD TESTING	LAB TESTING	COMMENTS				
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)	Shear Strength Testing (kPa) X Other Test + Pocket Penetrometer ▲ Field Vane (Intact) △ Field Vane (Remolded) 40 80 120 160 Penetration Testing ○ SPT ● DCPT	Combustible Organic Vapour (ppm) Combustible Organic Vapour (%LEL) Total Organic Vapour (ppm) 100 200 300 400 Atterberg Limits PL	Instrumentation Installation	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL			
щ	TOPSOIL: 175 mm 189:	ss	<u>ه</u>	75	6 6	0 190							
	CLAYEY SILT: Some sand, trace gravel, firm to very stiff, grey, moist	SS	2	100	17	-	6	C	Ţ				
		SS	3	100			20 9	14					
	2.3 187.1 SANDY SILT GLACIAL TILL: Some	3 SS	4	100		2 — 188	27 0	9 Q					
	clay, trace gravel, inferred cobbles and boulders, compact to dense, brown, moist	ss	5	100		-	480						
	moist			100		4 — 186							
		SS	6	100	23	100	23 0						
1 H H	5.0 185. Borehole Terminated at 5.0 m	, 33	0	100	23		230		224				
64								ave depth after auger removal: C	Jpen				
	arrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details	present	ed do n	ot cons	titute a	thorough understa	anding of all potential conditions present a	roundwater Elevation: 189.2 m nd require interpretative assistance from		Scale:1 :100			
v	WWW.geiconsultants.com a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was									Page: 1 of 1			

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

anatolia Invesments Corporation Proposed Commercial Warehouse

728 Sixth Line, Milton, ON

See Borehole Location Plan

Drilling Method:	Hollow Stem A	ugers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4821605	Date Started:	Apr 21/23
Reviewed By:	GW	Easting:	595261.4	Date Completed:	Apr 21/23q

	LITHOLOGY PROFILE	SOIL SAMPLING					FIELD TEST Shear Strength Testin			LAB TESTING						COMMENTS					
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	(m) H	ELEVATION (m)	$\times + \blacktriangle$	Other Tes Pocket Pe Field Van Field Van 40 8	t enetrometer e (Intact) e (Remolder 0 120	I) 160		Combust Total Org 00 2	ible Orgar ible Orgar janic Vapo 200 31 erberg Lim	nic Vapou our (ppm) 00 4	ur (%LEL)	Instrumentation Installation	G	8 RAIN STRIE (9	i SIZ BUTI(E
Litholo	6.9 189.3	Sampl	Sampl	Recov	SPT "N	DEPTH (m)			Penetration Testing SPT OCPT 10 20 30 40			PL LL O Water Content (%) 10 20 30 40					GR	SA	SI	CL	
	TOPSOIL: 75 mm	SS	1	100	5	0	-	0 5∖					0								
	^{0.8} organics, trace gravel, loose, brow ¹ ⁶ ⁸ , <u>moist to wet</u> CLAYEY SILT: Some sand, trace	SS	2	100	10	-	- 188	10	6				12 O								
	gravel, till-like, inferred cobbles and boulders, stiff to very stiff, brown, moist	SS	3	90	16	2-			16 Q				2	20 0							
	2.3 187.0 SANDY SILT GLACIAL TILL: Some	SS	4	90	24	2	-		2	4Q											
	clay, trace gravel, inferred cobbles and boulders, compact to dense, brown to brownish grey, moist	SS	5	100	32	-	- 186			320											
	;,		-		-	4 —															
							-			<i>,</i>			10								
	5.0 184.2 Borehole Terminated at 5.0 m	SS	6	100	15				15 Ú												
	Wolhom Bood Unit 14		-			tered or	n compl	etion	of drillir	ng: Dry	_ <u>C</u> _					removal: Open					
	arrie, Ontario L4N 0B7						understa	ndina a	f all pote	ntial conditi	ons present	Ground and requ				ce from			Socie	1 . 4 04	
w	ww.geiconsultants.com a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was									Scale: Page:											

Project Number:	2300805
Project Client:	Anatolia Invesments Corpora
Project Name:	Proposed Commercial Wareh
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

vesments Corporation

Local Benchmark:

posed Commercial Warehouse	
28 Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821700 Date Started: Mar 9/23 Reviewed By: ____ Easting: ____ 595280.3 Date Completed: Mar 9/23

	LITHOLOGY PROFILE	SOI	LSA	MPL	ING				FIELD TES	-		LAB	TES	ring			COMMENT			3
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× +	Shear Strength Tes Other Test Pocket Penetromet Field Vane (Intact) Field Vane (Remole 40 80 12 Penetration Te	ded) 20 160 sting	PL +		ble Organ anic Vapc 00 30 rberg Lim	iic Vapou our (ppm))0 4(its	r (%LEL)	Instrumentation Installation	G Dis	8 RAIN STRIE (%	L I SIZE BUTIC 6)	E DN
Lith	0.0 189.6 0.2 TOPSOIL · 205 mm 189.4	San	San	Rec	SPT			0	SPT DCF 10 20 3) Water 10 2	Content		0	Inst Inst	GR	SA	SI	CL
	0.2 TOPSOIL: 205 mm ^{189.4} SAND AND SILT: Some clay, loose to compact, brown, moist	SS	1	75	5	0	-	Q 5 \				16	0 23							
		SS	2	100	13	-		1	30			16 0								
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	3	100	26	2-	- 188		260			14 0								
	boulders, compact to dense, brown, moist to wet	SS	4	100	24		-		24 0			13 O					First V	Vater S	Strike	3S4
		SS	5	100	42	-				420		10								
00.00 00.00 00.00						4 —	- 186				_									
		SS	6	100	27		-		27 ර	/		9								
IN ES	5.0 184.6 Borehole Terminated at 5.0 m			100					21 -											
							n comp	etion	of drilling: Dry	C	Cave				noval: (Open				
	arrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details p	presente	ed do n	ot cons	titute a	thorough						ire interp	oretative a	assistan	ce from			Scale	1 :100	
w	ww.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	r. Also,	boreho	ole inform	ation sho	uld be r											1 of 1	

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

atolia Invesments Corporation
oposed Commercial Warehouse
•

Local Benchmark:

roposed Commercial Warehouse	
728 Sixth Line, Milton, ON	

Drilling Method: Hollow Stem Augers Drilling Machine: Track Mount
 Logged By:
 SDP
 Northing:
 4821506
 Date Started:
 Apr 21/23 Reviewed By: _____ Easting: _____ 595248.9 Date Completed: _____ Apr 21/23

	LITHOLOGY PROFILE	SO	L SA	MPL	ING					D TES				LAB	TEST	ΓING			сом			;
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× 0 + F	Other Tes Pocket Po Field Van Field Van	enetrome e (Intact) e (Remol 30 1	ter Ided) 20 1	a) 60		Total Orga 00 20	ble Organ	nic Vapou our (ppm) 20 4	ur (%LEL)) 00	Instrumentation Installation	Ģ	8 RAIN STRIE (%	I SIZE BUTIC	E
Lithold	0.0 189	Samp	Samp	Recov	SPT "	DEPT	ELEV	0 5	SPT	tration Te DC 20	PT	40			Content		LL 10	Instru Install	GR	SA	SI	CL
\bigotimes	FILL: Clayey silt, some sand, trace organics, firm, dark brown, moist	ss	1	60	5	0		Q 5 \							0 23							
Ĩ	CLAYEY SILT: Some sand, stiff, brown		2	90	14	-	-		40					17 0	25							
	moist			05	45									15								
	2.3 187.	SS	3	95	15	2-	- 188		15 4	×.												
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and		4	95	23				2	30				13 O					First V	Vater S	Strike	384
	boulders, compact, brown to brownish grey, wet to moist	SS	5	100	29	-				29)>	þ											
0000 1007						4-	- 186			/												
	5.0 184.									ĺ.			8									
	5.0 184. Borehole Terminated at 5.0 m	B SS	6	100	18		-		18 Ú				8									
	7 Wolhom Bood Unit 14	indwat indwat					n compl	etion o	of drillii	ng: Dry	-	<u> </u>	Cave d Ground				noval:	Open				
В	arrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details	present	ed do n	ot cons	titute a	thorough						oresent a	and requi	re interp	retative a	assistan	ce from			Scale:	1 :100	
w	ww.geiconsultants.com a qualified geote commissioned a								ead in co	njunctio	n with th	ie geoteo	cnnical re	eport for	which it	was				Page:		

Project Number:	2300805
Project Client:	Anatolia Invesments Corpo
Project Name:	Proposed Commercial War
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan
Local Benchmark:	

tolia Invesments Corporation oosed Commercial Warehouse

Drilling Method:	Hollow Stem A	Augers	Drilling Machine:	S	
Logged By:	SDP	Northing:	4821646	Date Started:	May 1/23
Reviewed By:	GW	Easting:	595336.2	Date Completed:	May 1/23

LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING COMMENTS Shear Strength Testing (kPa) & \triangle Combustible Organic Vapour (ppm) × Other Test **GRAIN SIZE** Combustible Organic Vapour (%LEL ELEVATION (m) Pocket Penetrometer Instrumentation Installation Sample Numbe Total Organic Vapour (ppm) 100 200 300 400 DISTRIBUTION SPT "N" Value Field Vane (Intact) -ithology Plot Sample Type Recovery (%) DESCRIPTION $\overline{\Delta}$ Field Vane (Remolded) 40 80 120 DEPTH (m) (%) 160 Atterberg Limits Penetration Testing PL LL O SPT Water Content (%) GR SA SI CL DCPT 190. TOPSOIL: 230 mm SS 100 5 1 0 12 0 5 FILL: Clayey silt, some sand, stiff, brown, moist **15** O 190 60 SS 2 55 6 10 - - - Some organics - - -SS 3 100 11 11 D 2-10 CLAYEY SAND AND SILT GLACIAL 4 100 22 220 SS 26 12 31 31 TILL: Some gravel, inferred cobbles - 188 and boulders, compact to dense, **15** 0 First Water Strike SS5 brown, moist --- Wet ---SS 5 100 18 18 Ó 8 SS 6 100 35 35¢ 186 6 70 - - - Sand seam - - -SS 7 100 25 25 Ó 184 12 SS 100 19 19 Ć 8 182.7 Borehole Terminated at 8.1 m Ţ Groundwater depth encountered on completion of drilling: 4.5 m. Cave depth after auger removal: 6.7 m. **GEI CONSULTANTS** 647 Welham Road, Unit 14 V Groundwater depth observed on: Groundwater Elevation: Barrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Scale:1 :100 www.geiconsultants.com Page: 1 of 1

Apr 25/23

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

atolia Invesments Corporation	
oposed Commercial Warehouse	

Local Benchmark:

Proposed Commercial Warehouse	
728 Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount SDP Northing: Logged By: Reviewed By: <u>GW</u> Easting: <u>595345.4</u> Date Completed: <u>Apr 25/23</u>

4821435 Date Started:

E Conteal Green G		LITHOLOGY PROFILE	SOI	L SA	MPL	ING					TING			LAB	TES	TING			C	омм		\$
TOPSOL: 150 mm 85 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 1	Lithology Plot		Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	 X Other Tee + Pocket Poc	st enetrome le (Intact) le (Remol 80 12 tration Te • DC	ter 20 16 Isting PT	<u>o</u>		ombustik otal Orga 00 20 Atter Water	ble Orgar anic Vapo 0 31 berg Lim Content	nic Vapou our (ppm) 00 4i nits (%)	ur (%LEL)) 00 	Instrumentation Installation	G DIS	& RAIN STRIB (%	SIZE UTIC)	E DN
CLAMEN SLIT: Trace grawd, wary, entit, SS SS 3 100 22 3 3 100 22 3 3 100 22 3 3 100 22 3 100 23 10 23 10 23 10 23 10 23 10 23 10 23 10 23 10 23 10 </td <td>\otimes</td> <td>TOPSOIL: 150 mm ^{189.5} FILL: Clavev silt, some sand, firm,</td> <td>SS</td> <td>1</td> <td>80</td> <td>8</td> <td>0</td> <td></td>	\otimes	TOPSOIL: 150 mm ^{189.5} FILL: Clavev silt, some sand, firm,	SS	1	80	8	0															
SS 3 100 22 3 3 1 7 20 3 3 1 <th1< th=""> 1 1<td>Ĭ</td><td></td><td></td><td>2</td><td>100</td><td>16</td><td>-</td><td>-</td><td>Ì,</td><td></td><td></td><td></td><td></td><td>19</td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Ĭ			2	100	16	-	-	Ì,					19	9							
1000000000000000000000000000000000000		dark brown, moist	SS	3	100	22		- 188	22	»o				1	21							
adder, trace gravel, inferred cobbles and brevel, moist to wet Image: size of the size of th							2-															
moist to wet IS 5 100 19 Image: Complexity of the state states		clay, trace gravel, inferred cobbles and	SS	4	100	29		_		29 C	\$			D								
1446 SS 6 100 20 4 20 8 100		moist to wet	SS	5	100	19			19 🤇	5			Ő						First V	/ater S	trike \$	SS5
Borehole Terminated at 5.0 m							4 —	- 186		ļ												
Borehole Terminated at 5.0 m			99	6	100	20		Z	20				9									
		5.0 184.6 Borehole Terminated at 5.0 m	- 33	0	100	20			20	<u> </u>												
					the end				etion of drilli	ng: 4 5	m		ave de				noval: (Onen				
	64	7 Wolhom Dood Unit 14						n compl	etion of drilli	าg: 4.5	m	\sim					noval: (Open				

647 Welham Road, Unit 14 Barrie, Ontario L4N 0B7 T : (705) 719-7994 www.geiconsultants.com

Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Scale:1 :100 Page: 1 of 1

Apr 26/23

4821473 Date Started:

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount

Reviewed By: GW Easting: 595427.7 Date Completed: Apr 26/23

SDP Northing:

Logged By:

Project Number:	2300805
Project Client:	Anatolia I
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Borel

natolia Invesments Corporation	
oposed Commercial Warehouse	

28 Sixth Line, Milton, ON e Borehole Location Plan

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				FIELI	D TES	TING	i		LAB	TES	TING						•
ly Plot	DESCRIPTION	Type	Sample Number	ry (%)	" Value	(m)	ELEVATION (m)	× 0 + F ▲ F	Other Tes Pocket Pe Field Van	enetrome e (Intact) e (Remol	ter ded)	a) 60		Fotal Org 00 2	ble Orgai	nic Vapo our (ppm 00 4	ur (%LEL	Instrumentation Installation		GRAIN STRIE	k N SIZ	E
Lithology Plot	6.0 186.5	Sample Type	Sample	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVA	0 %	SPT	tration Te	PT	.0	PL + C) Water	Content	(%)	LL 10	Instrum Installai	GR	SA	SI	CL
	TOPSOIL: 50 mm FILL: Sandy clayey silt, trace organics	SS	1	80	5	0	-	05	~						0							
	CLAYEY SILT: Some sand, trace 1.5 gravel, very stiff, brown, moist 188.7	ss	2	100	17	-	100		17`0 					16 0					4	16	48	32
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, cobbles and	SS	3	100	17	2 —	- 188		17 0					12 O								
	boulders, compact to dense, brown, moist	SS	4	100	22		-		22	δ_			1									
	Sand seam, wet	SS	5	100	48	-	- 186					480	1						First	Nater	Strike	SS5
						4	Z				/											
	5.0 184.5	SS	6	100	21		-		21	٢				12 O							-	
	Borehole Terminated at 5.0 m																					
		ndwat	er de	pth er	ncount	tered or	n compl	etion o	of drillir	ng: 4.1	m	C c	ave d	epth at	fter au	ger rer	noval:	Open				
	arrie, Uniario L4N 087	ndwat												lwater								
w	T: (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned ar	chnical e	enginee	er. Also,	boreho	ole inform	ation sho	uld be re									ice from			Scale Page:		

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

natolia Invesments Corporation

Project Location: <u>6728 Sixth Line, Milton, ON</u> Logged By: <u>SDP</u> Northing: <u>4821561</u> Date Started: <u>Apr 24</u> Drilling Location: <u>See Borehole Location Plan</u> Reviewed By: <u>GW</u> Easting: <u>595444.9</u> Date Completed: <u>Apr 24</u> Local Benchmark: LITHOLOGY PROFILE <u>SOIL SAMPLING</u> <u>LITHOLOGY PROFILE</u> <u>SOIL SAMPLING</u> <u>UTOPSOIL: 150 mm</u> <u>885 1 85 4</u> <u>98 8 2 100 15</u> <u>102 0 30 40</u> <u>102 0 30 40 <u>102 0 100 15</u> <u>102 0 100</u></u>						
Local Benchmark: LithoLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING COMMENT: DESCRIPTION a b b b b b b b b b b b b b b b b b b b	25/23					
LITHOLOGY PROFILE SOIL SAMPLING DESCRIPTION	Date Completed: Apr 25/23					
DESCRIPTION and builders brown, moist brown, moist ss 1 85 4 100 200 300 310 26 188-1 ss 5 100 200 300 310 26 100 200 300 100 200 300 400 100 200 300 100 26 100 26 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100 <th></th>						
DESCRIPTION and builders, dense, brownish grey, moist ss 1 85 4 100 200 Shear Strength Testing (kPa) A Combustible Organic Vapour (ppm) Combustible Organic Vapour (ppm) Combustible Organic Vapour (ppm) A Combustible Organic Vapour (ppm) Combustible Organic Vapour (ppm) Combustible Organic Vapour (ppm) A Combustible Organic Vapour (ppm) Combustible Organ						
02 TOPSOIL: 150 mm 188.9 SS 1 85 4 0 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 15 16 15 16 15 16 15 16 15 16 16 20 30 10 15 16 16 20 10 10 10 10 </th <th>E ON</th>	E ON					
IOPSOIL: 150 mm SS 1 85 4 FILL: Clayey silt, some sand, firm, 0.8 brown, moist 188.3 -	CL					
0.8 brown, moist 188.3 Image: Clay EY SILT: Some sand, trace gravel, very stiff, brown, moist SS 2 100 15 16 1						
gravel, very stiff, brown, moist Image: state of the state of t						
SS 4 100 20 3.0 186.0 SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, dense, brownish grey, moist SS 5 100 31 SS 6 100 34 11 11						
3.0 186.0 SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, dense, brownish grey, moist SS 5 100 31 SS 6 100 34 11						
SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, dense, brownish grey, moist SS 6 100 34	SS4					
clay, trace gravel, inferred cobbles and boulders, dense, brownish grey, moist SS 6 100 34						
SS 7 100 30 30 10 10 10 10 10 10 10 10 10 10 10 10 10						
Image: state						
8.1 181.0 SS 8 100 38 8 4 100 38 8 4 100 38 8 8 100 38 8 8 100 38 8 8 100 38 8 8 100 38 8 8 100 38 8 8 100 38 8 8 100 38 8 8 100 38 100 38						
Borehole Terminated at 8.1 m						

GEI CONSULTANTS 647 Welham Road, Unit 14 Barrie, Ontario L4N 0B7 T : (705) 719-7994 www.geiconsultants.com

Groundwater depth encountered on completion of drilling: 5.7 m.

Groundwater depth observed on: Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.

Cave depth after auger removal: Open Groundwater Elevation:

> Scale:1 :100 Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

natolia Invesments Corporation
oposed Commercial Warehouse

Local Benchmark:

natolia Invesments Corporation							
roposed Commercial Warehouse							
728 Sixth Line, Milton, ON							

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821356 Date Started: Apr 26/23 Reviewed By: _____ Easting: _____ 595430.7 Date Completed: _ Apr 26/23

	LITHOLOGY PROFILE	SOI	LSA	MPL	ING						STING			LAB	TES	ΓING			C	омм	ENTS	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× 0 + F	Other Tes Pocket Po Field Van Field Van 0 8	-) Ided) 20 1 esting	a) 60		Combusti Total Org 00 2 Atte	ble Orgar ble Orgar anic Vapo 00 31 rberg Lim	nic Vapou our (ppm) 00 40	r (%LEL)	Instrumentation Installation	G	8 RAIN	I SIZE BUTIO	
ĬĬĬĬ	8.9 \TOPSOIL: 100 mm	66	თ 1	80	ഗ 8	<u> </u>	<u>ш</u>	1	0 2	20	<u>30 4</u>	<u>40</u>	· ·		20 3	<u>0 4</u>	.0					
	CLAYEY SILT: Some sand, firm to very stiff, brown, moist Trace gravel	ss	2		23		-	0. 8		~			8	0 11				_				
	1.5 187.9		2	100	23		- 188		2	30												
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	3	100	18	2-			18 ්													
	boulders, compact to very dense, brown, moist	SS	4	100	43		-				4	30		14 0								
	Brownish grey	SS	5	100	52	-	- 186					052 -	8									
10000						4-	100					/						\mathbb{X}				
6 6 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9							-				/		.	10				X				
	5.0 184.4 Borehole Terminated at 5.0 m	SS	6	100	24				2	40				1 0 0				\propto				
		ndwat	er de	pth en	ncoun	tered or	n compl	etion c	of drillin	ng: Dr	/	\mathbb{C}	Cave d	epth a	fter au	ger ren	noval:	Open				
	arrie, Ontario L4N 0B7						un 22/2								Elevati							
w	T : (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	er. Also,	boreho	ole inform	ation sho	uld be re	all pote ad in co	ntial cor njunctio	nditions p on with th	oresent le geote	and requ chnical r	ire interp eport for	which it	assistan was	ce from			Scale: Page:	1 :100 1 of 1	

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

atolia Invesments Corporation oposed Co 28 Sixth L

e Borehole Location Plan

Local Benchmark:

Drilling Meth
Logged By:

Drilling Method:	Solid Stem Aug	gers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4821523	Date Started:	May 1/23
Reviewed By:	GW	Easting:	595461.3	Date Completed:	May 1/23

	LITHOLOGY PROFILE	SO	L SA	MPL	ING						TING			LAB	TES	TING			COMMENTS	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)		Other Te Pocket F Field Van Field Van	-	ded) 20 160 esting			ombusti otal Org 00 2 Atte	ble Orgar ble Orgar anic Vapo 00 30 rberg Lim	nic Vapou our (ppm) 00 4 iits	ur (%LEL	mentation ation	& GRAIN SIZE DISTRIBUTION (%) GR SA SI C	Ľ
	0.0 189.3 0.2 TOPSOIL: 205 mm 189.1	ഗ SS	თ 1	<u>⊮</u> 90	თ 5	0	<u> </u>	0 5	10	20 3	30 40		1	0 2	0 3	0 4	10			
иии	FILL: Clayey silt, some sand, firm, ^{0.8} brown, moist to wet CLAYEY SILT: Some sand, firm to very		2	100	5	-		5 5 4						:	0 23 21				First Water Strike SS2	2
	stiff, brown, moist						- 188								27			Ţ		
		SS	3	100	15	2-			15℃					4.4	0					
		SS	4	100	28		-			28 Q				14 O						
	3.0 186.3 SANDY SILT GLACIAL TILL: Some clay, inferred cobbles and boulders,	SS	5	60	39	-	- 186				39)0			14 O						
	dense to compact, brownish grey, mois	t				4 —					/									
				400			-				/			1 1 0						
		SS	6	100	26	-	- 184			26 Ŭ /										
0.00 80,0						6-2	z			/										
		SS	7	90	19		-		19 (5				12 O						
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						-	- 100			Ň										
100 CH 100		SS	8	100	27		- 182			\ 27℃				0						
<u>ার্থা মি</u> য়	8.1 181.2 Borehole Terminated at 8.1 m					8-	1													
	Barrie, Ontario L4N 087												Scale:1 :100							
W	vw.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	er. Also,	boreho	le inform	ation sho	uld be i											Page: 1 of 1	

Mar 9/23

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

atolia Invesments Corporation
oposed Commercial Warehouse
•

Local Benchmark:

Proposed Commercial Warehouse	
728 Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Buggy Mount SDP Northing: Logged By: Reviewed By: GW Easting: 595377.8 Date Completed: Mar 9/23

4821856 Date Started:

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING					D TES				LAB	TES	TING			C	омм	ENT	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× C + P ▲ F	other Tes locket Pe ield Van ield Van 0 8	enetromet e (Intact) e (Remole 0 12	ded) 20 10	a) 60		Fotal Orga 00 20	ble Orgar	nic Vapou our (ppm) 00 4	ur (%LEL)) 00	Instrumentation Installation	G	8 RAIN STRIE (%	I SIZE BUTIC	Ξ
	0.0 189.5	Samp	Samp	Reco	SPT "		ELEV	0 s 1	PT	tration Te DCI 0 3	≥т	10			Content		LL 10	Instru Install	GR	SA	SI	CL
*	^{0.2} TOPSOIL: 230 mm ^{189.3} FILL: Sand and Silt, trace clay, loose,	SS	1	45	6	0	-	0 6\							0 24							
ÎÌ	CLAYEY SILT: Some sand, stiff, brown,	SS	2	100	12	-		12							27 0			Ţ	First V	/ater S	Strike	SS2
	1.5 wet 187.9 CLAYEY SANDY SILT GLACIAL TILL:	SS	3	100	20		- 188		20	\sim				13 O								
	Trace gravel, inferred cobbles and boulders, compact, brown, moist			100	4.4	2-	_							19	9							
	Grey, wet	SS	4	100	14	-		1	40 						1							
		SS	5	90	12		- 186	12	Ó I					13 O								
Ĭ.	5.0 184.4					4-	_															
	5.0 184.4	SS	6	100	14	Ċ		1	40				1									
	Borehole Terminated at 5.0 m																					
		ndwat	er dep	oth en	count	tered or	n compl	etion o	f drillir	ng: 4.5	m	C	Cave d	epth af	fter au	ger rer	noval:	4.8 m.				
	arrie, Ontario L4N 087					d on:Ju							Ground									
w	T : (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	r. Also,	boreho	ole inform	ation sho	uld be re									ce from			Scale: Page:)

Project Number:	2300805
Project Client:	Anatolia I
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Borel

natolia Invesments Corporation
roposed Commercial Warehouse
•

e Borehole Location Plan

Local Benchmark:

roposed Commercial Warehouse
728 Sixth Line, Milton, ON

Drilling Method: Solid Stem Augers Drilling Machine: Buggy Mount _____ SDP Northing: _____ Logged By: 4821795 Date Started: Mar 12/23
 Reviewed By:
 GW
 Easting:
 595486.1
 Date Completed:
 Mar 12/23

	LITHOLOGY PROFILE	SO	LSA	MPL	ING						STING			LAB	TES	ΓING			c	COMMENTS			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× + +	Other Tes Pocket Po Field Van Field Van 40 8 Pene	st enetrome e (Intact)	Ided) 20 16 esting				ble Orgar	nic Vapou our (ppm) 00 4	ur (%LEL)	Instrumentation Installation	G	8 RAIN STRIE	k I SIZI	E	
E. Add	0.0 189.5 ∖ TOPSOIL: 100 mm		Sa		SF	<u> </u>						0		<u>10 2</u>	20 <u>3</u>		40 	sul	GIX	54	51		
	FILL: Silty sand, loose, brown, moist 0.8 SANDY CLAYEY SILT: Trace organics,		1	30	4		-	4 1						0 18	24								
	firm to stiff, brown, moist to wet		2	100	5	-	Z ¹⁸⁸	5 Q (17 0	0				First V	Vater 9	Strike	SS3	
	2.3 187.3	SS	3	100	14	2	<u>F</u>	1						0					1 1100 1	valor (Stinto	000	
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	4	100	18		-		18¢						29 C	•							
	boulders, compact, brown, very moist	SS	5	100	14	-	-	1	I4 ¢					13 O									
						4-	~ 1 86																
	5.0 184.6	SS	6	100	23		-		2	30				11									
(ABS	5.0 184.6 Borehole Terminated at 5.0 m	33	0	100	23					.													
	GLICONJULIANIS																						
	arrie, Ontario L4N 087			-	serve								Ground										
w	ww.deiconsultants.com a qualified geotec	m Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Scale 1:100 Page: 1 of 1																					

Mar 9/23

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

natolia Invesments Corporation	
roposed Commercial Warehouse	

ee Borehole Location Plan

Local Benchmark:

roposed Commercial Warehouse	
728 Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Buggy Mount Logged By: SDP Northing: 4821869 Date Started: Reviewed By: **GW** Easting: 595484.5 Date Completed: Mar 9/23

LITHOLOGY PROFILE SOIL SAMPLING								FIELI					LAB	TES	TING		COMMENTS						
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	(m) H.	7TH (m)		Shear Strength Testing (kF X Other Test + Pocket Penetrometer ▲ Field Vane (Intact) △ Field Vane (Remolded) 40 #0 120 Penetration Testing					Combusti Total Org 00 2	ble Orgar anic Vapo 00 30	e Organic Vapour (ppm) e Organic Vapour (%LEL nic Vapour (ppm) 0 300 400 verg Limits			G	& RAIN STRIB (%	SIZE	E	
ithol		Samp	Samp	Reco	SPT "	DEPT	ELEV	0	SPT	• DC	PT	0	PL -		Content		- LL	Instrumentation Installation	GR	SA	SI	CL	
***	FILL: Sand and silt, loose, brown, moist	66	1	100	4	0		0 4\	10 2	0 3	<u>104</u>	0		10 2	0 20 20 20	30 4	0						
	CLAYEY SILT: Some sand, trace	SS	2	95	10	-		10	2						22 〇				First V	/ater S	Strike	SS2	
	organics, stiff to very stiff, brown, wet to moist	SS	3	100	20		- 188		20 0)				14 0									
	2.3 187.0 SANDY SILT GLACIAL TILL: Some					2-	-			r J				17 0									
	clay, trace gravel, inferred cobbles and boulders, compact, brown, moist	SS	4	100	22	-			22														
		SS	5	100	22		- 186		22	6 1													
						4 —	-		1	/													
	5.0 184.3	SS	6	100	18				180				·	1 0 				$\langle\!\langle\!\langle$					
	Borehole Terminated at 5.0 m																						
		<u> </u>																					
	7 Wolhom Bood Unit 14					ered on					-	\sim			fter au			Open					
	arrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details p					d on: Ju			-						Elevati					<u> </u>			
w	ww.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	r. Also,	boreho	le informa	ation show	uld be re									ce num			Scale: Page: '			

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

natolia Invesments Corporation
oposed Commercial Warehouse
728 Sixth Line, Milton, ON

Local Benchmark:

atona invesments corporation				
oposed Commercial Warehouse	Drilling Method: S	olid Stem A	ugers	Drilling Machin
28 Sixth Line, Milton, ON	Logged By:	SDP	Northing:	4821820
e Borehole Location Plan	Reviewed By:	GW	Easting:	595579.4

e: Track Mount ___ Date Started: Mar 10/23 **595579.4** Date Completed: Mar 10/23

LITHOLOGY PROFILE SOIL SAMPLING									STING			LAB	TES	TING		c	OMN		s			
jy Plot	DESCRIPTION	t Type	Sample Number	ry (%)	SPT "N" Value	(m)	ELEVATION (m)	× +	Shear Sti Other Tes Pocket P Field Van Field Van 40	st enetrome ie (Intact))	a) 60	. ▲ .	Combusti Combusti Total Org 100 2 Atte	ble Orgai	nic Vapou our (ppm) 00 4	ur (%LEL)	Instrumentation Installation	G	8 RAII STRII	R N SIZI BUTIC %)	E
Lithology Plot	0.0 187.2	Sample Type	Sample	Recovery (%)	SPT "N	DEPTH (m)	ELEVA	0	Penetration Test ○ SPT ● DCPT 10 20 30				PL) Water	Content	(%)	— LL ю	Instrum Installat	GR	SA	SI	CL
	02 105 ILL: Sand and gravel, loose, brows moist		1	75	5	0	-	 5∖							0 23						1	
	TOPSOIL: 180 mm SANDY CLAYEY SILT: Trace organics	, ss	2	70	10		- 100	10	, b					2	20				First V	Vater	Strike	SS2
	1.5 stiff, brown to grey, wet 185.7 SANDY SILT GLACIAL TILL: Some	SS	3	100	23		- 186		2	30				11 D								
	clay, trace gravel, inferred cobbles and boulders, compact, brown, moist					2-	-			/				11 0								
		SS	4	100	20				20													
120-82		SS	5	70	22		- 184		22	$\frac{1}{2}$				11 P								
						4 -			/	/			-									
	4.6 182.6 SILT: Trace sand, compact, grey, wet 5.0 182.2		6	100	12			1:	20						24							
	Borehole Terminated at 5.0 m						4															
-	GEI CONSULTANTS $\stackrel{[]}{=} Groui$	 ndwat	er dei	l oth en	l icount	ered o	n comp	l etion		ng: Drv	: /	<u> </u>	Cave d	l lepth a	 fter au	 ger rer	noval:	Open				
64	7 Wolhom Dood Unit 14		-		serve							$\overline{\mathbf{U}}$	Ground	-		-		·				
	T : (705) 719-7994 www.geiconsultants.com a qualified geoted	Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.																				
	commissioned an	d the ad	ccompa	nying '	Explana	tion of B	oring Log	•												Page	1 of 1	

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

atolia Invesments Corporation

e Borehole Location Plan

Local Benchmark:

natolia invesments Corporation
roposed Commercial Warehouse
728 Sixth Line, Milton, ON
zo olkur Elle, wilton, ol

Drilling Method: Solid Stem Augers Drilling Machine: Buggy Mount Logged By: SDP Northing: 4821729 Date Started: Mar 10/23 Reviewed By: GW Easting: 595539.0 Date Completed: Mar 10/23

Note: Note: <th< th=""><th></th><th>LITHOLOGY PROFILE</th><th>SOI</th><th>L SA</th><th>MPL</th><th>ING</th><th></th><th></th><th>FIELD TESTIN</th><th></th><th>L</th><th>AB TESTI</th><th>NG</th><th></th><th>COMMENTS</th></th<>		LITHOLOGY PROFILE	SOI	L SA	MPL	ING			FIELD TESTIN		L	AB TESTI	NG		COMMENTS
Construction Construction Set 4 4 5 4 0 <th0< th=""> 0 <th0< th=""> 0 <th0< td=""><td>Lithology Plot</td><td></td><td>Sample Type</td><td>Sample Number</td><td>Recovery (%)</td><td>SPT "N" Value</td><td>DEPTH (m)</td><td>ELEVATION (m)</td><td>X Other Test Pocket Penetrometer Field Vane (Intact) Field Vane (Remolded) 40 80 120 Penetration Testing ○ SPT ● DCPT</td><td>160</td><td>Comt ◇ Total 100 PL ↓ ○ W</td><td>oustible Organic V Organic Vapour 200 300 Atterberg Limits Vater Content (%)</td><td>Vapour (%LEL) (ppm) 400 LL</td><td>Instrumentation Installation</td><td>& GRAIN SIZE DISTRIBUTION (%)</td></th0<></th0<></th0<>	Lithology Plot		Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	X Other Test Pocket Penetrometer Field Vane (Intact) Field Vane (Remolded) 40 80 120 Penetration Testing ○ SPT ● DCPT	160	Comt ◇ Total 100 PL ↓ ○ W	oustible Organic V Organic Vapour 200 300 Atterberg Limits Vater Content (%)	Vapour (%LEL) (ppm) 400 LL	Instrumentation Installation	& GRAIN SIZE DISTRIBUTION (%)
PIL: Setty Sind, Book and Sitty, Water Strike SS2 13 Mail SANDY CLAVEY SIT: Sift, brown, wet to most sist 4 100 18 14 14 15 Mail 16 12 17 13 18 13 19 13 19 13 10 14 10 14 10 14 10 14 10 14 10 14 11 14 12 13 13 14 14 14 15 16 16 14 17 18 18 13 19 14 10 14 11 14 12 16 13 14 14 14 15 16 16 16 17 18 18 16 19 16 10 16		TOPSOIL: 125 mm								40			40		
Statuty CLAPEY SILT: Sith iss 3 into 10 With third site iss 3 into 10 Solutions, compact, brown, we to more site 5 into 11 to 10 to 1	畿		99	2	100	4	_	-			14				First Water Strike SS2
SADU CLAYEY Sull, Salt,	畿			2	100	-	Ţ	– 188						<u> </u>	
SADUY SULT CLACALA TLL: Some day, therefore consult interest of the second se		wet	SS	3	100	10		ļ	10 0						
GELOONULTANKS Yes Yes Grundwater depth encountered on completion of drilling: 1.5 m. Cave depth after auger removal: Open		SANDY SILT GLACIAL TILL: Some	SS	4	100	18		-	180			1			
1000 100 100 100 Borehole Terminated at 5.0 m 0 <td></td> <td></td> <td>SS</td> <td>5</td> <td>100</td> <td>11</td> <td>-</td> <td></td> <td>110</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>			SS	5	100	11	-		110			1			
196.0 55 6 85 28 280 70 Borehole Terminated at 5.0 m 1 1 1 1 1 1 Image: I							4-	- 186							
Borehole Terminated at 5.0 m							4 -				10				
CELICONSULTANTS			SS	6	85	28			280					\propto	
Groundwater depth observed on: Jun 22/23 at depth of: 1.1 m. Groundwater Elevation: 188.4 m		Welhem Deed Unit 14								\sim				Open	

Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.

Scale:1 :100 Page: 1 of 1

Page: 1 of 1

___ Drilling Machine: Track Mount

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore
Local Benchmark:	

atolia Invesments Corporation oposed Commercial Warehouse

28 Sixth Line Milton ON

P	Project Location: 6728 Sixth	Line, Milton,	ON				Logged By: SDP					Northing: 4821552 Da						Date St	tarted:		Apr 2	1/23
D	Drilling Location: See Boreho	ole Location	Plan				Reviewed By: GW					Easting: 595065.4						Date C	omplet	ed:	May 1	/23
L	ocal Benchmark:																					
	LITHOLOGY PROFILE	= sc			ING			l –	FIEI		STING			I A R	TES	TING						
											sting (kPa)			LAD	120				C	OMN 8		S
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× Other Test												GRAIN STRIE	N SIZ	
 ∞		199.4				<u> </u>					<u>30 40</u>			10 2			0	드드	-			
XX	CLAYEY SILT: Some sand CLAYEY SILT: Some sand	/		90 100	6 16	-	- 190	0 6	160					0 14 17 0								
	gravel, very stiff, brown, i	,		100			-		150					14 0								
	Trace sand, wet	s	6 4	100		2-	— 188		15 ¢						24 O				First V	Vater	Strike	SS4
	3.0 SANDY SILT GLACIAL TILL clay, trace gravel, inferred cot		3 5	100	27		-			270				11 0								
	boulders, compact, brownish of moist					4 —																
8		S	\$ 6	65	11		- 186	11	ď				1									
							-															
		SS	6 7	100	11	6 -	- 184	11	0					12 O								
80000						-																
	8.1	182.4 SS	8 8	100	19	8-			19				1	0								
	Borehole Terminated at 8	.1 m																				
64	GEI CONSULTANTS 7 Welham Road, Unit 14			-			n comp	letion	of drilli	ng: Dry	′ _	_		epth af Iwater			noval:	Open				_
	Image: Instance of the second seco																					

Drilling Method: Hollow Stem Augers

Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia Invesments Corpora
Project Name:	Proposed Commercial Wareh
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan
-	

atolia Invesments Corporation

Local Benchmark:

oposed Commercial Warehouse	
28 Sixth Line, Milton, ON	

Drilling Method: Hollow Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821503 Date Started: Apr 21/23 Reviewed By: ____ Easting: ____ 595121.7 Date Completed: Apr 21/23

LITHOLOGY PROFILE			SOIL SAMPLING								TING		LAB TESTING						C	COMMENTS			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	X Ot + Po ▲ Fie	her Tes icket Pe eld Vane eld Vane 8		ded) 20 10	a) 60	🔺 C	otal Orga 00 20	ole Organ	nic Vapou our (ppm) 00 40	ur (%LEL)	Instrumentation Installation	G	8 RAIN STRIE	k I SIZ	E	
Lith C	0.0 <u>181.8</u>	Sam	Sam	Reo	SPT	DEF	ELE	O SF 10	РТ 2	DCI 0 3	PT 10 4	0	0 1		Content 0 3		10	Instr Insta	GR	SA	SI	CL	
\bigotimes	TOPSOIL: 50 mm FILL: Silty sand, trace clay, loose, ^{0.8} brown very moist ^{191.0}	SS	1	100	8	0		0 8						0 15									
Ĥ	CLAYEY SILT: Some sand, trace	SS	2	25	10	-	-	10 Q	、					15 O									
	gravel, stiff to very stiff, brown, moist	SS	3	100	19		- 190		190					16 O									
						2 -			_/					18 0									
	3.0 188.7	SS	4	100	17	_	-		17 0														
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	5	100	35					3	350			12 O									
	boulders, dense to compact, brownish grey, moist					4 —	- 188				/												
				400	07	Ч С	Z						9										
		SS	6	100	27	-				27 Q													
800 90							- 186				Ì			16									
	Very dense	∖SS	7	50	50+	6 —						50+		16 0									
800						-	-				/	/											
										, /					23								
	8.1 183.7 Borehole Terminated at 8.1 m	SS	8	100	21	8-	- 184		21	0 0					0							-	
		ndwat	er de	pth er	icount	ered or	compl	etion of	drillin	ng: 4.4	m	<u> </u>	ave de	epth af	ter au	ger ren	noval:	4.8 m.					
	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7												Ground										
w	T : (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned an	hnical e	nginee	er. Also,	boreho	le informa	ation sho	uld be rea	ll poter d in coi	ntial con njunction	ditions p n with th	e geotec	nd requi hnical re	re interp port for	retative which it	assistan was	ce from			Scale Page:			

Project Number:	2300805
Project Client:	Anatolia Invesments Corpor
Project Name:	Proposed Commercial Ware
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan
-	

atolia Invesments Corporation oposed Commercial Warehouse

Borehole Location Plan

Drilling Method: Hollow Stem Augers Drilling Machine: Solid Stem Augers Logged By: SDP Northing: 4821438 Date Started: Apr 25/23 GW Easting: Reviewed By: 595217.2 Date Completed: Apr 25/23

	LITHOLOGY PROFILE SOIL SAMPLING					FIELD TESTING Shear Strength Testing (kPa)						LAB TESTING					COMMENTS					
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	(m) H	ELEVATION (m)	× Oth + Poo	ner Tes cket Pe Id Vane Id Vane 8	t enetrome e (Intact) e (Remol 0 1	ter Ided) 20 1	a) 60		Combusti Fotal Org 00 2	ble Orda	our (ppm 00 4	ur (%LEL)) 00	ation	c	8 RAIN STRIE	& N SIZ	E
Litholo	0.0 190.5 0.2 TODOOU 150 mm 190.5	Sample	Sample	Recov	SPT "N	DЕРТН (m)	ELEV	O SP 10	т	tration Te DC 0 3	PT	40) Water 10 2			LL 10	Instrument	GR	SA	SI	CL
	FILL: Clayey silt, some sand, firm,	SS	1	100	8	0	- 190	0 8							0 25							
	CLAYEY SILT: Some sand, stiff to very stiff, brown, moist		2	25	10			10 0						16 0				Ţ				
	Very stiff	SS	3	100	19	2-	-		19 ¢	2												
		SS	4	100	17		- 188	1	17 d					18 0								
	3.0 187.5 CLAYEY SANDY SILT GLACIAL TILL:		5	100	35		-				350		8									
	Trace gravel, inferred cobbles and boulders, compact to dense, brownish grey, moist					4 -	-				/											
		SS	6	100	27		- 186			27 ď	/		8									
							-				``							•				
	Very dense	SS	7	50	50+	6 -	1					50+	<u>}</u>	13					First \	Vater	Strike	SS7
							- 184				,	/							5			
				100	01		-		04	/	/				23							
	8.1 182.4 Borehole Terminated at 8.1 m	SS	8	100	21	8-			21													
-	GELCONSULTANTS 목 Grou	l ndwat	er der	 pth er	l ncount	tered o	n compl	etion of	drillir	ig: Drv	: /	:	Cave d	l epth at	l fter au	l ger rer	l noval:	l Open				
64	7 Welbam Road Init 14						•	3 at dept		0 ,	-	\sim	Ground	-		-		·				
	T : (705) 719-7994 ww.geiconsultants.com	hnical e	enginee	er. Also,	boreho	ole inform	ation sho	uld be read	II poter d in co	ntial con njunctio	ditions p n with th	oresent le geote	and requi	ire interp eport for	retative which it	assistan was	ice from			Scale		
	commissioned an	u trie al	compa	mying '	стріяца	ation of B	oning Log	•												Page:	<u>1 of 1</u>	1

Project Number:	2300805
Project Client:	Anatolia Invesmen
Project Name:	Proposed Comme
Project Location:	6728 Sixth Line, M
Drilling Location:	See Borehole Loca

natolia Invesments Corporation
roposed Commercial Warehouse
728 Sixth Line, Milton, ON

Borehole Location Plan Local Benchmark:

Drilling Method:	Solid Stem Aug	ers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4821382	Date Started:	Apr 25/23
Reviewed By:	GW	Easting:	595290.3	Date Completed:	Apr 25/23

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				FIELD TES	TING	i		LAB	TES	TING				20141		<u> </u>
									Shear Strength Te Other Test	sting (kPa	a)		Combustil			ur (ppm)				<u>k</u>	-
H		a	nber	()	ne		(u)	+ F ▲ F	Pocket Penetrome Field Vane (Intact)					ble Orga	nic Vapo	ur (%LEL	tion		GRAIN STRII		
gy Plo	DESCRIPTION	e Typ	e Nun	ery (%	u" Val	E T	ATION	Ā	ield Vane (Remol	ded) 20 16	60	-		rberg Lin		00	nentat ation			%)	
Lithology Plot	0.0 191.0	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	0			0	PL +		Content		LL 40	Instrumentation Installation	GR	SA	SI	CL
 XXX	0.3 TOPSOIL: 330 mm 190.7 FILL: Silty sand, loose, brown, wet	SS	1	75	4	0		္ 4	0 20 3	4	0				0 32	+0				1	
	· · _ · · · · · · · · · · · · · · · · ·	SS	2	75	4	-	- 190	4					19 C		52			First	Water	Strike	SS2
	1.5 189.4 SANDY CLAYEY SILT: Trace gravel,	SS	3	40	21			Ň	210				12								
	very stiff, brown, moist					2-	-		1				15 0								
	3.0 187.9	SS	4	100	22	_	- 188		22 0				Ő								
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	5	100	33				33	30		0									
	boulders, dense, brownish grey, moist to wet					4	-					-									
		SS	6	20	45					4	150		13								
			-			-	- 186			,	/										
0.00						6-	-			/			15								
		SS	7	25	31				31	ø			15 O								
						Ţ	<u>Z</u> 184														
	Silty clay layer 8.1 182.9	SS	8	100	10	8-		10 (5				15 O								
141 1224	Borehole Terminated at 8.1 m					0															
		ndwat	er dep	oth en	count	tered or	n compl	etion o	of drilling: 7.0	m	C	Cave d	epth af	fter au	ger rer	noval:	Open	_	_		_
Ba	Welham Road, Unit 14 rrie, Ontario L4N 0B7											Ground									
	T : (705) 719-7994 w.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	r. Also,	boreho	ole inform	ation sho	uld be re	all potential con ad in conjunctio	ditions p n with th	resent e geote	and requi chnical re	ire interp eport for	retative which it	assistan was	ice from			Scale Page:		

Project Number:	2300805
Project Client:	Anatolia Invesments Corpora
Project Name:	Proposed Commercial Warel
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

olia Invesments Corporation

Local Benchmark:

Proposed Commercial Warehouse	
728 Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821304 Date Started: Apr 26/23 Reviewed By: ____ Easting: ___ 595357.3 Date Completed: Apr 26/23

LITHOLOGY PROFILE		SOI	LSA	MPL	ING			D TESTING		LAB TES	TING		соми	COMMENTS			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)	 X Other Te + Pocket F ▲ Field Vai △ Field Vai 40 Pene ○ SPT 	Penetrometer ne (Intact) ne (Remolded) 80 120 160 etration Testing DCPT			nic Vapour (%Ll our (ppm) 00 400 hits (%)		ہ GRAIN DISTRIE	& N SIZE BUTION %)	CL		
 XXX	0.0 190.6 0.2 TOPSOIL: 150 mm	ss	1	80	4	<u> </u>	10	20 30 40			0 40	= =	I				
	FILL: Silty sand, loose, brown, moist			00	4	- 190	4			0 21 20							
	CLAYEY SILT: Some sand, firm to very stiff, brown, moist	SS	2	100	6		60										
		SS	3	100	20	2-	20	ý #		13 0							
	Wet	SS	4	100	18	- 188	18 0	5		18 O			First Water	Strike SS4	4		
						-		Y,		12 O							
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, compact, brown, moist to wet	SS	5	95	22	4 —	2	2 \ \		0		_					
		SS	6	100	27	186		۱ 27 ბ	1								
ALC: NO. 10						-											
		SS	7	100	25	6 —		250		11		-					
						<u> </u>											
	8.1 182.5 Borehole Terminated at 8.1 m	SS	8	100	14	8_	14 ď			12 O		_					
	GLICONJULIANIS			-			pletion of drilli	ing: 4.5 m	_	epth after au		l: 7.0 m.					
	arrie, Ontario L4N 0B7				stitute a		anding of all pote	ential conditions prese		water Elevat		n	0	4 .400			
w	ww.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	er. Also,	, boreho	le information sl	ould be read in c	onjunction with the ge	otechnical r	eport for which it	was			1 :100 1 of 1			

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

atolia Invesments Corporation oposed Com

28 Sixth Line

oposed Commercial Warehouse	Drilling Method: S
28 Sixth Line, Milton, ON	Logged By:
e Borehole Location Plan	Reviewed By:

rilling Method:	Solid Stem Aug	jers	_ Drilling Machine:	Track Mount	
ogged By:	SDP	Northing:	4821268	Date Started:	Apr 26/23
eviewed By:	GW	Easting:	595415.3	Date Completed:	Apr 26/23

	LITHOLOGY PROFILE	SO	LSA	MPL	ING					D TEST			l	LAB	TES	ring			ſ	OMN		s
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× 01 + Pc ▲ Fi	her Tes ocket Pe eld Vane eld Vane 8	netrometer e (Intact) e (Remolde 0 120	r ed)) 160		Coi > Tot 100	mbustib tal Orga	le Organ	our (ppm) 0 40	ır (%LEL) 00	Instrumentation Installation	c	8 RAII STRII	& N SIZ	E
_itholc		Sampl	Sampl	Recov	SPT "	DEPTI	ELEV	O SF 10	т	ration Test DCP1 0 30	г	PL		Water (Content	(%) 0 4	- LL	nstrur nstallå	GR	SA	SI	CL
, XXX	8.9 TOPSOIL: 125 mm	SS	1	70	4	0	-	a 4 \	2	0 30	40			0 18) 3	0 4	.0					
${\overset$	FILL: Sandy silt, some clay, loose, brown, moist	SS	2	100	19			4	190				10									
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and		2	100	19		- 186		190				I									
	boulders, compact to dense, brown to brownish grey, moist	SS	3	100	31	2-				31)0)		9 C									
		SS	4	100	20		-		20 🤇	5			10									
						-	104						10									
8 0 S		SS	5	100	21		- 184		21 /	0			Î									
						4 —	-		/													
0 151 0 10 0	Wet	SS	6	100	14			14	ģ				11	1					First \	Nater	Strike	SS6
						-	- 182		Ì,													
						6-																
		SS	7	100	27	Ū	-			270			9									
						Ī	¥															
							- 180						9									
2100-22 20-22	8.1 179.1 Borehole Terminated at 8.1 m	SS	8	100	28	8-				28 Ó		-										
							ר compl	etion of	drillin	ıg: 7.0	m. (-					noval: (Open				
	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details µ			-			undereta	nding of s	II noter	tial condi	tions preserve				Elevati		ce from			0	4 . 4 6 1	
W	ww.geiconsultants.com	hnical e	enginee	er. Also,	boreho	ole inform	ation sho	uld be rea	d in coi	njunction	with the geo	technic	al rep	ort for v	which it	was				Scale Page		

Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

anatolia Invesments Corporation roposed Commercial Warehouse

728 Sixth Line, Milton, ON

ee Borehole Location Plan

Drilling Method:	Solid Stem Aug	gers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4820869	Date Started:	Apr 27/23
Reviewed By:	GW	Easting:	595098.0	Date Completed:	Apr 27/23

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				FIELD TE	STING			LAB	TES	TING						
Plot	DESCRIPTION					u)	ON (m)	S × C + F ▲ F	hear Strength T other Test ocket Penetrom ield Vane (Intac ield Vane (Rem 0 80	esting (kPa) eter			combustil	ble Orgar ble Orgar anic Vapo 00 30	nic Vapou nic Vapou	ır (%LEL	ntation	G	OMM 8 RAIN STRIE (%)	I SIZE BUTIC	Ξ
Lithology Plot	8.9 181.4	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	4 0 s 1	Penetration	esting	1		Water	Content		<u>н</u> ц	Instrumentation Installation	GR	SA	SI	CL
	TOPSOIL: 50 mm CLAYEY SILT: Some sand, trace organics, firm to very stiff, brown, moist	SS	1	65	7	0	-	Q 7 -	<					0 26							
		SS	2	60	15	-	- 100		50					22 〇			-				
	1.5 189.8 SILT: Some clay, trace sand, compact, brown, wet 2.3	SS	3	100	19	2-	- 190		190					24 O				First V	Vater S	Strike	SS3
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	4	90	22		-		22 0				1 1 0								
	boulders, compact, brownish grey, wet	SS	5	100	16	-	- 188		16 J			1									
					-	4 —															
	5.0 186.3	SS	6	100	20		-		20 0				16 O				\bigotimes				
	Borehole Terminated at 5.0 m																				
									f drilling: Dr			Cave de					Open				
	arrie, Ontario L4N 0B7 T : (705) 719-7994 Borehole details p	oresente	ed do n	ot cons	titute a	thorough	understa	nding of	pth of: 0.7 all potential co	m. nditions pre	sent	Ground	re interp	retative a	assistan				Scale:	1 .100	
w	ww.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	r. Also,	boreho	le inform	ation sho	uld be re	ad in conjuncti	on with the	geote	chnical re	port for	which it	was				Page:		

Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

atolia Invesments Corporation pos

8 Si Borehole Location Plan

ed Commercial Warehouse	Drillin
ixth Line, Milton, ON	Logge

Drilling Method:	Solid Stem Aug	gers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4820869	Date Started:	Apr 28/23
Reviewed By:	GW	Easting:	595240.4	Date Completed:	Apr 28/23

COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
First Water Strike SS5
n
-

Apr 28/23

Project Number:	2300805
Project Client:	Anatolia Invesments Corporat
Project Name:	Proposed Commercial Wareh
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan
-	

olia Invesments Corporation

Local Benchmark:

roposed Commercial Warehouse
728 Sixth Line, Milton, ON

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4820989 Date Started: Reviewed By: ____ Easting: ___ 595256.3 Date Completed: Apr 28/23

	LITHOLOGY PROFILE	SOI	LSA	MPL	ING			FIELD TESTING	LAB	TESTING			омм	ENTS	3			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	Shear Strength Testing (kPa) X Other Test + Pocket Penetrometer ▲ Field Vane (Intact) △ Field Vane (Remolded) 40 80 120 160 Penetration Testing ○ SPT ● DCPT	Combusti	ble Organic Vapour () ble Organic Vapour (° anic Vapour (ppm) 00 300 400 rberg Limits	^{%LEL)} 5		8 RAIN STRIE (۶ sa	I SIZE BUTIC	1			
Ē	0.0 192.0 10.2 TOPSOIL: 150 mm ^{191.8}		Sa	Re	R	Ë		10 20 30 40		20 30 40		GR	SA	31	UL			
\bigotimes	FILL: Clayey silt, some sand, firm,	SS	1	65	5			0 5		21								
ÎÛ	0.8 brown, moist 1912 SANDY CLAYEY SILT: Trace gravel, inferred cobblesa nd boulders, compact	SS	2	100	19	-	-	190	14 O									
	to dense, brown, moist	SS	3	100	21	2-	- 190	210	15 O		<u> </u>							
		SS	4	100	32			320	12 O			3	22	49	26			
	Wet	SS	5	100	30	-	-	30 🖓		24 〇		First \	Vater \$	Strike \$	SS5			
						4 —	— 188											
	4.6 187.4 SANDY SILT GLACIAL TILL: Some	SS	6	100	27			270	10									
	clay, trace gravel, cobbles and boulders, compact, brown, moist					-	-				•.	1						
		SS	7	100	21	6 —	- 186	210	9									
		00	1		21	F	7											
			_			ļi.			11 0									
i li	8.1 183.9 Borehole Terminated at 8.1 m	SS	8	100	17	8-	- 184	170				∮						
										fter auger remo		1						
	arrie, Ontario L4N 0B7			-				•		Elevation: 190.		-						
T : (705) 719-7994 WWW.geiconsultants.com Borehole details presented do not constitute a thorough understanding of all potential conditions present and require inter a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report f commissioned and the accompanying 'Explanation of Boring Log'.											from Scale 1 :100 Page: 1 of 1							

Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia Invesments Corpora
Project Name:	Proposed Commercial Ware
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

nvesments Corporation

Local Benchmark:

posed Commercial Warehouse											
8 Sixth Line, Milton, ON											

Drilling Method:	Solid Stem Aug	ers	Drilling Machine:	Track Mount						
Logged By:	SDP	Northing:	4820983	Date Started:	Apr 28/23					
Reviewed By:	GW	Easting:	595335.2	Date Completed:	Apr 28/23					

LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING COMMENTS Shear Strength Testing (kPa) & \triangle Combustible Organic Vapour (ppm) × Other Test **GRAIN SIZE** Combustible Organic Vapour (%LEL Pocket Penetrometer ELEVATION (m) Instrumentation Installation Sample Number Total Organic Vapour (ppm) 100 200 300 400 DISTRIBUTION SPT "N" Value Field Vane (Intact) ithology Plot Recovery (%) DESCRIPTION Sample Type Δ Field Vane (Remolded) 40 80 120 DEPTH (m) (%) 160 Atterberg Limits Penetration Testing PL LL O SPT Water Content (%) GR SA SI CL DCPT TOPSOIL: 205 mm 1 90 11 0 18 SS 0 CLAYEY SILT: Some sand, stiff, brown moist - - - Some gravel - - -14 0 SS 2 100 19 19 Ö - 190 **16** 0 220 SS 3 100 22 2-15 - - - Trace gravel - - -SS 4 100 24 240 32 3 18 47 **13** 0 - - - Hard, wet - - -- 188 First Water Strike SS5 SS 5 100 44 440 ⁴⊉ 10 GRAVELLY SAND: Dense, brown, Wet 320 SS 6 100 32 gravel, inferred cobbles and boulders, dense, brownish grey, wet Borehole Terminated at 5.0 m Ţ Groundwater depth encountered on completion of drilling: 4.2 m. Cave depth after auger removal: Open **GEI CONSULTANTS** 647 Welham Road, Unit 14 Groundwater depth observed on: Groundwater Elevation: Barrie, Ontario L4N 0B7 Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. T: (705) 719-7994 Scale:1 :100 www.geiconsultants.com

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore
Local Benchmark:	

atolia Invesments Corporation posed Commercial Warehouse

oposed Commercial warehouse	
28 Sixth Line, Milton, ON	

Borehole Location Plan

cation.	See

Drilling Method:	Solid Stem Aug	jers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4821080	Date Started:	Apr 28/23
Reviewed By:	GW	Easting:	595334.0	Date Completed:	Apr 28/23

			L SA	MPL	ING				D TE				LAB	TES	TING			с	COMMENTS				
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	 X Other Test + Pocket Penetrom ▲ Field Vane (Intac △ Field Vane (Rem 40 80 		eter) blded) 120 1	60		Combustit Combustit Total Orga 20 20 Atter		nic Vapou pur (ppm) 00 40	ır (%LEL) 20	Instrumentation Installation		8 RAIN STRIE (%	I SIZI BUTIC			
Lithold	0.0 190.5 0.2 TOPSOIL 230 mm 190.3	Samp	Samp	Recov	SPT "		ELEV	Pe O SPT 10	• DC	CPT	10			Content 0 3	(%) 0 4	- ⊥∟ 0	Instru Install	GR	SA	SI	CL		
	CLAYEY SANDY SILT: Trace gravel,	SS	1	80	7	0	— 190	0					0 18										
	firm to very stiff, brown, moist	SS	2	100	18	-		18					14 O										
		SS	3	100	19	2-	-	19	à				15 O										
	2.3 188.2 SANDY SILT GLACIAL TILL: Some	SS	4	100	36	-	- 188			36 Q			0										
	clay, trace gravel, inferred cobbles and boulders, dense to compact, brown, moist	SS	5	100	44	-				4	40	9											
						4 —	-				/												
						-	- 186		,	/		1	0										
	5.0 185.4 Borehole Terminated at 5.0 m	SS	6	100	25				25 ℃				>										
		ndwat	er de	oth en	icount	ered or	n compl	etion of dril	ling: Dr	у _	\Box	Cave de	epth af	ter au	ger ren	noval: (Open						
	arrie, Ontario L4N 087				serve			udius - f ··	ham4'-1	 6		Ground											
w	T : (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned an	chnical e	enginee	r. Also,	boreho	le inform	ation sho	uld be read in								ce from			Scale: Page:				

Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore
Local Benchmark:	

natolia Invesments Corporation ropo

ee Borehole Location Plan

roposed Commercial Warehouse
728 Sixth Line, Milton, ON

Drilling Method: Hollow Stem Augers Drilling Machine: Solid Stem Augers Logged By: SDP Northing: 4821095 ___ Date Started: Apr 28/23 GW Easting: Reviewed By: 595423.2 Date Completed: Apr 28/23

	LITHOLOGY PROFILE	E SOIL SAMPLING						FIELD TESTING Shear Strength Testing (kPa)				LAB TESTING						С	COMMENTS																
jy Plot	DESCRIPTION	Type	Sample Number	ry (%)	" Value	(m)	I (m) TION (m)		(m) (TION (m)		E I				(m) MOIT		(TION (m)		I (m) (TION (m)		ther Tes ocket Pe ield Vane	t netromet	er	a) 60		Combusti otal Org 00 2	ble Orga	nic Vapou nic Vapou our (ppm) 00 4 nits	ur (%LEL	Instrumentation Installation	G	8 BRAIN STRIE (%	I SIZ BUTI	E	
Lithology Plot	0.0 <u>190.2</u>	Sample Type	Sample	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVA	0 S	Penet PT	ration Te	sting PT	.0		Water	Content	(%)	LL 10	Instrum Installat	GR	SA	SI	CL	-												
\bigotimes	FILL: Clayey silt, some sand, stiff, brown, very moist	SS	1	100	8	0	- 190	0 8	\ \							50																			
	CLAYEY SILT: Some sand, stiff to very stiff, brownish grey, moist		2	100	14	-	-	1	40									Ţ																	
	2.3 187.9	SS	3	100	17	2-	- 188		170				-	16 0																					
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, compact to dense, brown to	SS	4	100	12	_		12	٥_ `	、				14 0																					
	brownish grey, moist to very moist	SS	5	100	31		-			31) 								First V	Vater S	Strike	SS5													
0.000						4	<mark>∠</mark> 186				 																								
	5.0 185.1	SS	6	100	31					31	5																								
	Borehole Terminated at 5.0 m																																		
		ndwat	er dep	oth en	count	ered or	n compl	etion o	f drillin	g: 4.2	m.	$\overline{\mathbb{C}}$	Cave de	epth at	fter au	ger rer	noval:	Open																	
647	Welham Road Init 1/	ndwat	er dep	oth ob	serve	d on: Ju	ın 22/23	3 at de	pth of:	0.9	m.		Ground	water	Elevat	ion: 18	39.3 m																		
W	T : (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned an	hnical e	enginee	r. Also,	boreho	le inform	ation sho	uld be rea	all poter ad in cor	itial con ijunctior	ditions p n with the	e geot	and requi echnical re	re interp port for	vretative which it	assistan was	ce from			Scale: Page:															

COMMENTS

CL

17

Project Number:	2300805
Project Client:	Anatolia Invesments Corpora
Project Name:	Proposed Commercial Ware
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

LITHOLOGY PROFILE

atolia Invesments Corporation	
posed Commercial Warehouse	

SOIL SAMPLING

Local Benchmark:

Proposed	Comn	nercial	Warehouse	
728 Sixth	n Line,	Milton	, ON	

Logged By: SDP Northing: 4821162 Reviewed By: GW Easting: 595100.2

Drilling Method: Solid Stem Augers

FIELD TESTING

Date Started: Apr 28/23 Date Completed: _____Apr 28/23

___ Drilling Machine: Track Mount

LAB TESTING

Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× 0 + F	Shear Stre Other Tes Pocket Pe Field Vane O 8 Penet	t netromet e (Intact)	ded) 20 10	a) 60		Combustil otal Orga 00 20	ble Organ ble Organ anic Vapo 20 30 berg Limi	ic Vapou ur (ppm) 0 40	r (%LEL)	Instrumentation Installation	G	RAIN RAIN TRIE (۶	SIZE UTIO	Ξ
Litho	0.0 189.8 0.2 TODOOU - 100 mm 189.6	Sam	Sam	Reco	SPT	DEP				DCF 0 3	РΤ	10 :	6		Content (0 30		1	Instr Insta	GR	SA	SI	C
\bigotimes	TOPSOIL: 180 mm ^{189.6} FILL: Clayey sandy silt, trace gravel, ^{0.8} firm, brown, moist ^{189.6}	SS	1	90	5	0		5						0 13								
	SANDY CLAYEY SILT: Trace gravel, very stiff, brown, moist	SS	2	100	17	-			170					15 O								
	Some sand	SS	3	100	20	2-	- 188		20 2	2				17 0								
	2.3 187.5 SANDY SILT GLACIAL TILL: Some	SS	4	100	31	2				31	Q		1	9					7	30	46	1
	clay, trace gravel, inferred cobbles and boulders, dense to very dense, brown	SS	5	100	39		-				39°C		8									
	to brownish grey, moist	33	5	100	39		- 186				390											
10.00						4 -	1															
	5.0 184.8 Borehole Terminated at 5.0 m	SS	6	80	71		-				(071 →	9 C									

GEI CONSULTANTS 647 Welham Road, Unit 14 Barrie, Ontario L4N 0B7 T : (705) 719-7994 www.geiconsultants.com

Groundwater depth encountered on completion of drilling: Dry

Ţ Groundwater depth observed on: Cave depth after auger removal: Open

Groundwater Elevation:

Scale:1 :100 Page: 1 of 1

Date Completed: Apr 26/23

Apr 26/23

Date Started:

Drilling Machine: Track Mount

4821313

595502.9

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

atolia Invesments Corporation posed Commercial Warehouse

Local

ATAO Alexabilities Military AN
6728 Sixth Line, Milton, ON

ion Plar	nole Lo	e Borel	Se
----------	---------	---------	----

Lo	ocal Benchmark:																				
	LITHOLOGY PROFILE	E S	SOIL	. SA	MPL	ING			FIELI Shear Street					LAB	TEST	ING			СОМ	MENTS	
Lithology Plot	DESCRIPTION	400.0	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)		Other Tes Pocket Pe Field Van Field Van 40 8 Penel SPT	t netromet e (Intact)	er 20 16 sting 27	50	▲ C ◇ T 10 PL ←	Combustik Combustik Total Orga 20 20 Atter Water 0 2	ele Organ inic Vapo 10 30 berg Limi Content (ic Vapou ur (ppm) 0 40 its	r (%LEL))0 	Instrumentation Installation	GRA DISTR	& IN SIZE IBUTIOI (%)	
Ť	∑	188.6 188.5	SS	1	75	6	0	୍ଚି	10 2	0 3	0 41	0			0 23	<u>J 4</u>	0				
	gravel, firm to stiff, brown,	moist -	SS	2	100	9	- 188	9	2						23 21 2						
	1.5 SAND: Trace silt, trace grave clay, loose, brown, we		SS	3	90	9	2 -	9 (16 O					7 82 First Wate	8 r Striko S	3
	2.3 SANDY SILT GLACIAL TILL clay, trace gravel, cobbles	186.4 .: Some	SS	4	100	30	- 186	;	/	30	کر			1 1 0					First wate	I SUIKE S	33
	boulders, dense to compcat, moist	, brown, 📙	SS	5	100	47	-					470	1	0							
			SS	6	100	20	4 - - 184		20 (1	Ó							
削出	5.0 Borehole Terminated at 5	103.0	55	0	100	20			20 0	, 											
	GEI CONSULTANTS 7 Welham Road, Unit 14						ered on con	npletion	of drillir	ıg: 4.5	m	\sim		epth af			noval: (Open			
	arrie, Ontario L4N 0B7 T : (705) 719-7994 Boreh	nole details pre	sented	d do no	ot const	titute a t	horough under	rstanding o	f all poter	ntial cond	ditions p	resent a	nd requi	water E	etative a	issistand	ce from		Sca	e 1 :100	
w	ww.deiconsultants.com a qual	lified geotechn	nical en	nginee	r. Also,	borehol	e information s tion of Boring L	should be r	ead in co	njunctior	n with the	e geotec	hnical re	port for	which it	was				e:1 of 1	

Drilling Method: Solid Stem Augers

SDP

GW

Northing:

Easting:

Logged By:

Reviewed By:

RECORD OF BOREHOLE No. 43-SL

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

Anatolia Invesments Corporation Pro

See Borehole Location Plan

Local Benchmark:

Proposed Commercial Warehouse	
6728 Sixth Line, Milton, ON	

Drilling Method: Hollow Stem Augers Drilling Machine: Track Mount Date Started: Mar 6/23 Date Completed: May 1/23

Reviewed By:	GW	Easting:	595546
Logged By:	SDP	Northing:	4821298

	LITHOLOGY PROFILE	SOI		MPL	.ING			D TESTING rength Testing (kPa)		B TESTING	3		С	ОММ	ENTS	3
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)	 X Other Te + Pocket P ▲ Field Var △ Field Var 40 	st enetrometer ne (Intact) ne (Remolded) 80 120 160	Combu	stible Organic Vap stible Organic Vap rganic Vapour (pp 200 300 terberg Limits	our (%LEL om) 400	Instrumentation Installation	G	8 RAIN STRIE (%	I SIZE BUTIC	
Litholo	0.0 186.1	Sampl	Sampl	Recov	SPT "	DEPTH (m) ELEVATION	Pene O SPT 10	etration Testing DCPT 20 30 40	PL O Wat	er Content (%) 20 30		Instrur Installa	GR	SA	SI	CL
×	0.2 TOPSOIL: 255 mm 185.9 FILL: Clayey silt, some sand, firm, 0.8 brown 185.4		1	95	5	0 - 186	0,		0		40	s¥.				
	0.8 brown 185.4 SANDY SILT GLACIAL TILL: Some	SS	2	90	34	-	5	340	10							
	clay, trace gravel, inferred cobbles and boulders, dense to compact, brown,	SS						1	10							
	moist	55	3	55	39	2		39.0								
		SS	4	65	15		150					:				
		SS	5	100	19	-	19	þ								
						4										
		SS	6	100	18		18						6	34	44	16
111 E	5.0 181.1 Borehole Terminated at 5.0 m	00		100	10		10 0						0		44	10
						ered on comp			Cave depth	after auger r	emoval:	Open				
	arrie, Ontario L4N 087					d on: Jun 22/2	-			r Elevation:				<u> </u>		
w	ww.geiconsultants.com a qualified geotec commissioned ar	chnical e	enginee	er. Also,	boreho	le information sho	uld be read in co	ntial conditions present onjunction with the geote	echnical report f	or which it was				Scale: Page:		

Project Number:	2300805
Project Client:	Anatolia I
Project Name:	Proposed
Project Location:	6728 Sixtl
Drilling Location:	See Borel

atolia Invesments Corporation	
oposed Commercial Warehouse	

orehole Location Plan

oposed Commercial Warehouse	
28 Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount SDP Northing: Logged By: Reviewed By: <u>GW</u> Easting: <u>595492.5</u> Date Completed: <u>May 1/23</u>

4821391 Date Started:

May 1/23

Local Benchmark:

						<u> </u>										
_		SOI		MPL	ING		FIELD TESTING Shear Strength Testing (kPa)		LAE		c	омм		3		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)	 X Other Test + Pocket Penetrometer ▲ Field Vane (Intact) △ Field Vane (Remolded) 40 40 120 160 Penetration Testing ○ SPT ● DCPT 0 		Combust Total Org 100 2 Atte PL	ible Organi anic Vapou 200 30 erberg Limit r Content (¹	ts LL %)	nentation		8 RAIN STRIE (9 SA	I SIZE BUTIC	
×	<u>00</u> 188.7 ↓ TOPSOIL: 100 mm FILL: Clayey silt, some sand, trace	SS	1	75	7	0	10 20 30 40	╡	10	20 30 0 24						L
	0.8 organics, firm, brown, wet 188.9 CLAYEY SILT: Some sand, trace	SS	2	100	8	-	84		1	9			First V	Vater S	Strike	SS2
	organics, trace gravel, stiff to very stiff, brownish grey, wet	SS	3	90	16	- 188	160		15 O							
		SS	4	100	20	2-	200		14 O							
	3.1	SS	5	100	41	-	410		8							
日的	SANDY SILT GLACIAL TILL: Some clay, inferred cobbles and boulders, dense to compact, brown to brownish					- 186 4 -										
	grey, moist	00		400	00	-			14							
	5.0 184.6 Borehole Terminated at 5.0 m	SS	6	100	28		28 0	+	0							
64	GEI CONSULTANTS 7 Welham Road, Unit 14						letion of drilling: Dry	Cave depth after auger removal: Open Groundwater Elevation:								

Groundwater depth observed on: Ŧ

Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.

Scale:1 :100

Page: 1 of 1

RECORD OF BOREHOLE No. 45-SL

Mar 6/23

Page: 1 of 1

Drilling Method: Hollow Stem Augers Drilling Machine: Track Mount

SDP Northing: **4821417** Date Started:

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

Anatolia Invesments Corporation Proposed Commercial Warehouse

6728 Sixth Line, Milton, ON

	rrilling Location: <u>See Borehole Locat</u> ocal Benchmark:	ion P	lan				Revi	ewed	Ву: _	G	iW	Ea	sting:		59	5587		Date Co	omplet	ed:	May 1	/23
	LITHOLOGY PROFILE	SOI	L SA	MPL	ING			FIELD TESTING LAB TESTING Shear Strength Testing (kPa)						COMMENTS								
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)		Other Te Pocket P Field Var Field Var 40 Pene SPT	st enetrome ne (Intact) ne (Remo 80 1 etration To • DC	ter Ided) 20 1 esting PT	a) 60		Combusi Total Org 00 2 Atte	ible Orga ible Orga ganic Vap 200 3 erberg Lin	nic Vapor our (ppm 00 4 nits	ur (%LEL)	Instrumentation Installation	Ģ	8 BRAIN STRIE	k I SIZE	E
, , ,	0.0 188.5 0.2 TOPSOIL: 205 mm ^{188.3}	ss	1	85	5	0			10	20 :	30 4	<u>40</u>		10	20 :		40					<u> </u>
	FILL: Clayey silt, trace sand, trace						- 188	Q 5 \							20) 31			_			
H	CLAY AND SILT: Some sand, trace gravel, stiff to hard, greenish brown to	SS	2	100	13	-			30_						ĭ				3	16	42	39
ľ	light brown, moist	SS	3	100	50+	2-						50+7			21 0							
	2.3 186.2 SANDY SILT GLACIAL TILL: Some	SS	4	100	27	-	- 186			27 O	/			12 O				•	First V	Nater S	Strike :	SS4
	clay, trace gravel, inferred cobbles and boulders, compact to dense, brown,					-				\				12 0								
	moist	SS	5	100	31		-			31	Ò			0								
0.8.0						4 —				/												
	5.0 183.4	SS	6	100	13	Ţ	Z ¹⁸⁴		30 30					11 D								
11100	Borehole Terminated at 5.0 m																	X				
64	7 Welham Road, Unit 14						n comp in 22/2				-			-	fter au Elevat	-	moval: (35.0 m	∪pen				
	arrie, Ontario L4N 0B7 T : (705) 719-7994 ww.geiconsultants.com	oresente hnical e	ed do ne	ot cons er. Also,	titute a boreho	thorough le inform	understa ation sho	inding o uld be r	f all pote	ential cor	ditions	present a	and requi	ire inter	oretative	assistan				Scale: Page:		

Logged By:

RECORD OF BOREHOLE No. 46-SL

Mar 6/23

Page: 1 of 1

Drilling Machine: Track Mount

Date Started:

4821390

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

Anatolia Invesments Corporation Proposed Commercial Warehouse

6728 Sixth Line, Milton, ON

See Borehole Location Plan

Drilling Location: See Borehole Location Plan							Revi	ewed By:	G	W	Easting:		598	5644	ompleted: <u>N</u>	lay 1/23		
L	ocal Benchmark:																	
	LITHOLOGY PROFILE	SOI	L SA	MPL	ING					STING		LAB	TES	TING			СОММЕ	ENTS
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	 X Other To + Pocket I ▲ Field Va △ Field Va 40 	est Penetrome ne (Intact) ne (Remo 80 1 etration Te DC	Ided) 20 160 esting		Combustil Fotal Orga 00 20 Atter	ble Orgar anic Vapo 00 30 rberg Lim Content		ir (%LEL)	Instrumentation Installation	& GRAIN DISTRIB (% GR SA	SIZE UTION
, X	0.2 TOPSOIL: 230 mm 187.2	66	1	85	7				20 .	50 40					0			
X	FILL: Clay, some sand, some silt, trace 0.8 gravel, firm, brown 186.7 CLAY AND SILT: Some sand, trace	SS	2	50	4	-	-	/7 0 4				0 17	21 O					
H	_{1.5} gravel, firm, greenish brown, light _{85.9} brown, moist/	SS	3	100	10		- 186	10 0				17						
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and					2 —						10						
ŝ	boulders, compact, brown	SS	4	100	24		-		240			12 (H				7 31	44 18
		SS	5	100	27	-	- 184		27			12 O						
	4.6 182.9					4€			 /									
Ŵ	CLAYEY SANDY SILT GLACIAL TILL: 5.0 Trace gravel, inferred cobbles and 2.4	SS	6	100	15			150			H	12 0					First Water S	trike SS6 42
	boulders, compact, grey, moist Borehole Terminated at 5.0 m																	
		ndwat	er de	pth en	icount	ered or	n compl	etion of drill	ing: Dry	/	Cave d	epth af	fter auç	ger ren	noval: 4	4.2 m.		
	7 Welham Road, Unit 14 arrie, Ontario L4N 0B7			-							Ground							
w	T: (705) 719-7994 ww.geiconsultants.com a qualified geotec commissioned an	hnical e	nginee	er. Also,	boreho	le inform	ation sho	uld be read in c	antial con onjunctio	ditions pres	sent and requi eotechnical re	ire interp eport for	which it	assistano was	ce from		Scale.1	

Drilling Method: Hollow Stem Augers

SDP

Northing:

Logged By:

RECORD OF BOREHOLE No. 47-SL

Mar 6/23

Project Number: 2300805 Project Client: Project Name: Project Location: Drilling Location:

Anatolia Invesments Corporation
Proposed Commercial Warehouse

6728 Sixth Line, Milton, ON See Borehole Location Plan

Proposed	Commercial	Warehouse

Drilling Method: Hollow Stem Augers Logged By: SDP Northing: 4821483 Reviewed By: GW Easting: 595640

Drilling Machine: Track Mount Date Started: Date Completed: May 1/23

LITHOLOGY PROFILE SOIL SAMPLING					ING				FIELD TES	-			LAB	TES	TING				OMN	IFNT	s
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	+	Shear Strength Tes Other Test Pocket Penetrome Field Vane (Intact) Field Vane (Remol 40 80 12 Penetration Te	ter ded) 20 10	a) 60	L ▲ C	ombustit otal Orga 0 20		nic Vapor our (ppm 00 4	ur (ppm) ur (%LEL)) 00 	Instrumentation Installation	0	8 RAIN STRIE	& N SIZ	E
Lithol	0.0 188.7	Samp	Samp	Reco	SPT -	DEP1	ELEV		SPT 🕒 DC	PT	0			Content 0 3		40	Instru Instal	GR	SA	SI	CL
	0.2 TOPSOIL: 230 mm ^{188.5} FILL: Clayey silt, trace sand, trace,	SS	1	85	5	0		0 5∖						C 29							·
Ŵ	CLAY AND SILT: Some sand, trace	SS	2	100	10	-	- 188	10	ò				2	2 1							
	gravel, stiff to firm, greenish brown, light brown, moist	SS	3	100	6		-	6 d	▲					28 〇				Vane	shear	test a	t 1.5 m
	2.3 186.4	33	3	100	0	2-		00										T = 10 arm le	00 lb-ft ength o	at tor of 300	que mm
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	SS	4	100	21		- 186		210					24 O							
	boulders, compact to dense, brown, moist	SS	5	100	33	-			33	30		9									
						4	-		/												
						4															
	Orange staining, darker brown-grey 	SS	6	100	16	-	- 184		16 0)								
0000 000 000									i												
						6 —							1								
		SS	7	100	14	<u> </u>	Z-182		14 ¢				C					9	32	42	17
						-			Ń												
		SS	8	100	23	8_	-		230				1								
91635	8.1 180.6 Borehole Terminated at 8.1 m					°_	1														
							n comp	letion	of drilling: 6.7	m	\sim	Cave de				noval:	Open				
	arrie, Ontario L4N 0B7		-				understa	andina	of all potential con	ditions n		Groundv				ice from			Secto	4 .404	<u> </u>
T : (705) 719-7994 WWW.geiconsultants.com a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.												Scale 1 :100 Page: 1 of 1									

Project Number:	2300805
Project Client:	Anatolia Invesments Corporation
Project Name:	Proposed Commercial Warehouse
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

natolia Invesments Corporation	
roposed Commercial Warehouse	
	_

Local Benchmark:

roposed	Comme	rcial \	Nard	house	
roposeu	Comme		vare	nouse	
728 Sixth	Line M	lilton	ON		
20 01201	LING, N	mon,			

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount Logged By: SDP Northing: 4821738 Date Started: Mar 9/23 Reviewed By: _____ Easting: _____ 595220.3 ___ Date Completed: _____ Mar 9/23

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING					STING			LAB	TES	ΓING			C		ENTS	5
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	 X Other + Pocke ▲ Field \ △ Field \ 40 	Test Penetrom ane (Intac ane (Rem 80 enetration	t) olded) 120 16 esting				ble Organ anic Vapo 00 30 rberg Lim	nic Vapou pur (ppm) 00 40 its	ır (%LEL)	Instrumentation Installation	G Dis	8 RAIN STRIE (%	i SIZE BUTIC 6)	≣ DN
	0.0 189.9 0.2 TOPSOIL: 255 mm 189.7	sa SS	Sal 1	2 100	ය 1	<u> </u>		O SPT 10	• D 20	CPT <u>30 4</u>	0			Content 0 3		.0	sul	GR	SA	SI	CL
XXX HHH	FaLL: Sand and silt, very loose, browୁଉ₃ ∖							1					18 0	0 27				First V	Vater S	Strike	SS2
	SANDY CLAYEY SILT: Trace organics, 1.5 stiff, brownish grey, wet 188.4	SS	2	100	12	-		12 [°] O													
	SANDY SILT GLACIAL TILL: Trace gravel, trace clay, inferred cobbles and	SS	3	100	16	2-	- 188	16 (2				15 0								
	boudlers, compact, brown, moist	SS	4	100	26				260				12 O								
		SS	5	100	27	-	-		27 ¢												
						4 —	- 186		/												
									1				10								
Ĭ	5.0 184.9 Borehole Terminated at 5.0 m	SS	6	100	18		-	18	0			'	0								
	GLICONJULIANIS	ndwat	er de	pth en	icount	ered or	n compl	etion of dr	lling: Di	у	\Box c	Cave d	epth at	ter aug	ger ren	noval: (Open	-			
	arrie, Ontario L4N 087						underet	nding of all -	tontial	nditions			lwater								
w	ww deiconsultants com a qualified geotec	N UB7 994 Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from Scale 1:100																			

Project Number:	2300805
Project Client:	Anatolia Ir
Project Name:	Proposed
Project Location:	6728 Sixth
Drilling Location:	See Boreh
-	-

atolia Invesments Corporation	
oposed Commercial Warehouse	

6728 Sixth Line, Milton, ON	Proposed Commercial Warehouse	
	6728 Sixth Line, Milton, ON	

Drilling Method: Solid Stem Augers Drilling Machine: Track Mount
 Logged By:
 SDP
 Northing:
 4821767
 Date Started:
 Mar 9/23
 Reviewed By: <u>GW</u> Easting: <u>595351.0</u> Date Completed: <u>Mar 9/23</u>

Borehole Location Plan Local Benchmark:

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING		FIELD TEST												5			
y Plot	DESCRIPTION	Type	Sample Number	.y (%)	' Value	(m)	ELEVATION (m)	× +	Other Te Pocket P Field Var)			Combusti Fotal Org 00 2	ble Orgar ble Orgar anic Vapo 00 30 brberg Lim	nic Vapou our (ppm) 00 4		Instrumentation Installation	c	8 GRAIN STRIE	IENTS & N SIZE BUTIC %)	E
Lithology Plot	0.0 189.	Sample Type	Sample	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVAT	0	Pene SPT	etration T	esting		PL -	Water	Content	(%)	- LL ю	Instrume	GR	SA	SI	CL
	0.2 TOPSOIL: 255 mm 189. FILL: Sand and silt, loose, brown, wet 188.	4 99	1	75	4	0	_	Q 4 \				5			0 23					1		1
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	ss	2	100	13	-		1	30					16 0					First \	Nater \$	Strike \$	SS2
	boulders, compact to dense, brown, moist	ss	3	100	19		- 188		\ 19 ²	۲ ۲				17 0								
		SS	4	100	31	2-				31	o(12 O								
		SS	5	100	17	-			17 O										7	32	45	16
		00	5	100	17	4 —	- 186		1/ 0	\ \									'	52	40	10
						4	-			۱,			1	0								
销법	5.0 184. Borehole Terminated at 5.0 m	s SS	6	100	24				2	240			(5								
		indwat	er de	pth en	ncount	tered or	n compl	etion	of drilli	ng: Dr	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Cave d	epth a	fter au	ger rer	noval:	Open				
		ndwat													Elevati							
w	T : (705) 719-7994 ww.geiconsultants.com commissioned a	chnical e	enginee	r. Also,	boreho	ole inform	ation sho	uld be r									ce from				1 :100 <u>1 of 1</u>	

Scale:1 :100 Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

atolia Invesments Corporation posed Commercial Warehouse

28 Sixth Line, Milton, ON

Drilling Location:	See Borehole Location Plan
Local Benchmark:	

Drilling Method:	Solid Stem Aug	jers	 Drilling Machine:	Buggy Mount	
Logged By:	SDP	Northing:	 4821608	Date Started:	Mar 13/23
Reviewed By:	GW	Easting:	 595565.0	Date Completed:	Mar 13/23

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING			FIEL	D TESTING		LAB TESTIN	G		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	 X Other Ter + Pocket Point ▲ Field Van △ Field Van 40 	enetrometer	▲ Cor ◇ Tot: 100 PL ←	mbustible Organic Va mbustible Organic Va al Organic Vapour (p 200 300 Atterberg Limits Water Content (%)	apour (%LEL)	Instrumentation Installation	COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	0 188.0 2 TOPSOIL: 150 mm ^{187.8}	ທີ SS	ഗ് 1	₽ 75	ی 6	<u> </u>	188	10 :	20 30 40	10	20 30	40	드드	
₩F t	ILL: Sand and silt, orange brick waste, race clay, loose to very loose, brown,		1	75	0			/6			0 19 32			First Water Strike SS2
▓.	wet 5 186.5	SS	2	45	2	-	-	02			32			Flist Water Strike 332
Ê.	SANDY SILT GLACIAL TILL: Some lay, trace gravel, inferred cobbles and	SS	3	100	18	2	- 186	18 0	×		2			
ži i k	poulders, compact, brown to brownish grey, wet	SS	4	100	28	2-	- 100		280	11				
	grey, wet		-	100	20	-	-			11				
		SS	5	75	27				27 0	þ				
						4 —	- 184		/					
8. 900-5.		SS	6	95	15	4	<u>Z</u>	150		12	2			
1111515.	0 183.0 Borehole Terminated at 5.0 m													
G	EI CONSULTANTS	l ndwat	er dep	pth en	icount	ered on	compl	letion of drilli	ng: 4.5 m.	Cave dep	oth after auger	removal: 4	4.8 m.	
647	Welham Road, Unit 14 rie, Ontario L4N 0B7	ndwat	er de	pth ob	serve	d on:				Groundwa	ater Elevation:			

Page: 1 of 1

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

natolia Invesments Corporation

e Borehole Location Plan

Local Benchmark:

oposed Commercial Warehouse										
28 Sixth Line, Milton, ON										

Drilling Method:	Solid Stem Aug	jers	Drilling Machine:	Buggy Mount		
Logged By:	SDP	Northing:	4821674	Date Started:	Mar 10/23	
Reviewed By:	GW	Easting:	595597.8	Date Completed:	Mar 10/23	

LITHOLOGY PROFILE		SOIL SAMPLING					FIELD TESTING Shear Strength Testing (kPa)				LAB TESTING						COMMENTS																							
gy Plot	DESCRIPTION	e Type	Sample Number	Recovery (%)	SPT "N" Value	1 (m)	DEPTH (m) ELEVATION (m)		1 (m) \TION (m)		1 (m) ATION (m)		1 (m) \TION (m)		1 (m) \TION (m)		H (m) VTION (m)		l (m) .TION (m)		l (m) .TION (m)		l (m) .TION (m)		l (m) TION (m))ther Tes ocket Pe ield Van		ler	a) 60		Combustil Combustil Total Orga 00 20 Atter	ble Orgar	nic Vapou our (ppm) 00 40	r (%LEL)	Instrumentation Installation	G	8 RAIN STRIE (%	I SIZI BUTIC	E
Lithology Plot	0.0 189.3 189.2 TODOOU 400 mm 189.2	Sample Type	Sample	Recove	SPT "N	DEPTH			PT	ration Te Tation Te Total	эт	.0		Water	Content		⊣ .∟ ₀	Instrum Installa	GR	SA	SI	CL																		
*	0.FILL: Silty sand, trace organics, vergar	SS	1	75	3	0	-	0 3							○ 22 23 ○																									
	\loose, brown, wet SANDY CLAYEY SILT: stiff, brown, wet	SS	2	100	8	7		80							23 〇				First V	Vater S	Strike	SS2																		
		SS	3	100	14	2-	- 188	1	40						26 〇																									
	2.3 187.1 SANDY SILT GLACIAL TILL: Trace	SS	4	85	12	2-	}	12	Ą					14 O																										
	gravel, trace clay, cobbles and boulders, compact, brownish grey, wet	SS	5	100	12	-	► 186	12	 					13																										
			0	100				12	آ ۱																															
						4-	-		,					11																										
仙	5.0 184.3 Borehole Terminated at 5.0 m	SS	6	85	18				18)					11 0																										
	7 Welbam Road Init 14																																							
	arrie, Ontario L4N 0B7						undorst	ndine of	all net	tial cor	ditions		Ground				co fro																							
T: (705) 719-7994 www.geiconsultants.com a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Page: 1 or																																								

RECORD OF BOREHOLE No. 52

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Proposed
Project Location:	6728 Sixt
Drilling Location:	See Bore

Anatolia Invesments Corporation	
Proposed Commercial Warehouse	
Proposed Commercial Warehouse	

728 Sixth Line, Milton, ON

See Borehole Location Plan

Drilling Method:	Solid Stem Aug	ers	Drilling Machine:	Buggy Mount	
Logged By:	SDP	Northing:	4821642	Date Started:	Mar 13/23
Reviewed By:	GW	Easting:	595642.0	Date Completed:	Mar 13/23

Local Benchmark:

								1					-					r –	r			
	LITHOLOGY PROFILE	SOI	L SA	MPL	ING						STING sting (kPa			LAB	TES	ΓING			0	COMN		s
Lithology Plot	DESCRIPTION	e Type	Sample Number	Recovery (%)	SPT "N" Value	4 (m)	ELEVATION (m)	× 0 + F	Other Tes Pocket Pe Field Van		ter			Combustit Combustit Total Orga 00 20 Atter	ole Orgar	nic Vapor pur (ppm 00 4	ur (%LEL	Instrumentation Installation		GRAII STRI		
Litholo	0.0 188.8	Sample Type	Sample	Recove	SPT "N	DEPTH (m)	ELEVA	0 5	SPT	tration Te DCI 0 3		0			Content 0 3		LL 40	Instrum Installa	GR	SA	sı	CL
	TOPSOIL: 50 mm	SS	1	100	5	0		 5∖	<u> </u>		-				0 25					1	I	1
Ŵ	^{0.8} organics, loose, brown, wet ^{187.9} CLAY AND SILT: Trace sand, trace	SS	2	100	9		- 188	96							24 0				First	Water	Strike	SS2
	gravel, stiff to very stiff, brown, wet	SS	3	100	16		-		160					┝	26				1	3	54	42
		SS	4	100	12	2-		12	7					18								
						-	- 186	12	`۸					16 0								
	SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and boulders, compact, brown to brownish	SS	5	100	21		-		21 /	þ				0				Ŵ				
	grey, wet to moist					4 —			/									\otimes				
	5.0 183.6	SS	6	100	12	<u> </u>	<u>Z</u> 184	12	б					11 0				K				
							n compl				m	\sim	Cave d				moval:	5.6 m.	-			
	T : (705) 719-7994 Borehole details	presente	ed do n	ot cons	titute a	thorough		nding of	all pote	ntial con		resent		ire interp	retative	assistan	ice from			Scale	1 :10	<u> </u>
W	ww.geiconsultants.com a qualified geoted commissioned and	hnical e	enginee	r. Also,	boreho	le inform	ation sho	uld be re													1 of 1	

RECORD OF BOREHOLE No. 53

Project Number:	2300805
Project Client:	Anatolia
Project Name:	Propose
Project Location:	6728 Six
Drilling Location:	See Bore

natolia Invesments Corporation

ocation: 6728 Sixth Line, Milton, ON ocation: See Borehole Location Plan

Local Benchmark:

oposed Commercial Warehouse	
28 Sixth Line, Milton, ON	

 Drilling Method:
 Solid Stem Augers
 Drilling Machine:
 Buggy Mount

 Logged By:
 SDP
 Northing:
 4821599
 Date Started:
 Mar 13/23

 Reviewed By:
 GW
 Easting:
 595754.3
 Date Completed:
 Mar 13/23

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				D TES				LAB	TES	TING			С	омм	FNT	\$
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)	× +	Other Te Pocket F Field Va Field Va 40	Penetrome ne (Intact) ne (Remol 80 1:	ter ded) 20 16	a) 60		Combustil Combustil Total Orga 00 20 Atter	ble Orgar	nic Vapou our (ppm) 00 4	ur (%LEL)) 00	Instrumentation Installation	G	8 RAIN STRIE (%	I SIZE BUTIC	Ξ
Litholo	0.0 183.6 10.2 TODOOL 150	Sampl	Sampl	Recov	SPT "I	DEPTH (m)	0		etration Te DCI 20 3	PT	0) Water 10 2	Content		LL 10	Instrur Install	GR	SA	SI	CL
	FILL: Sand and silt, some clay, loose,	SS	1	70	5	0	0 /5							0 24							
	brown, wet Silty sand, very loose	SS	2	100	2	¥	¢2								9						
Ě	1.5 182.1 SAND AND GRAVEL: Some silt, trace clay, compact, brown, wet	SS	3	45	10	- 182 2 -	10	 0					16 O								
る期間	2.3 181.4 SANDY SILT GLACIAL TILL: Some clay trace gravel, cobbles and boulders,	SS	4	75	8	-	8 ¢	/)					14 0					8	31	41	20
8999 1997 1997	loose, brownish grey, wet	SS	5	100	8	_C_	8 C						12 O								
						- 180 4 -	 - 														
	Grey 5.0 178.6	SS	6	15	4	-	64							23 〇							
	Borehole Terminated at 5.0 m																				
						ered on comp	etion	of drill	ing: 0.9	m	C	Cave d	epth af	fter au	ger rer	noval: :	3.3 m.				
	arrie, Ontario L4N 0B7				serve	d on: thorough understa	nding o	fall not	ential con	ditions n			lwater			ce from			0	4 . 4 9 9	
w	ww.geiconsultants.com a qualified geotec	hnical e	enginee	r. Also,	boreho	le information sho tion of Boring Log	uld be r	ead in c	onjunctio	n with th	e geote	chnical r	eport for	which it	was				Scale: Page:		

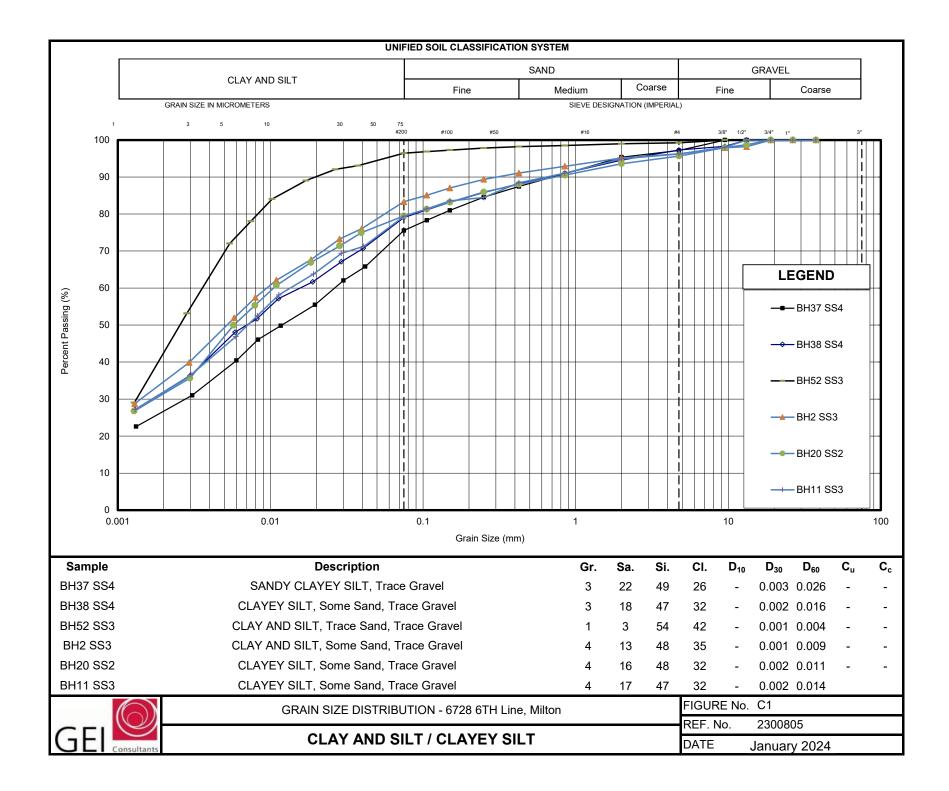
RECORD OF BOREHOLE No. 54

Project Number:	2300805
Project Client:	Anatolia Invesments Corpora
Project Name:	Proposed Commercial Wareh
Project Location:	6728 Sixth Line, Milton, ON
Drilling Location:	See Borehole Location Plan

a Invesments Corporation ed Commercial Warehouse

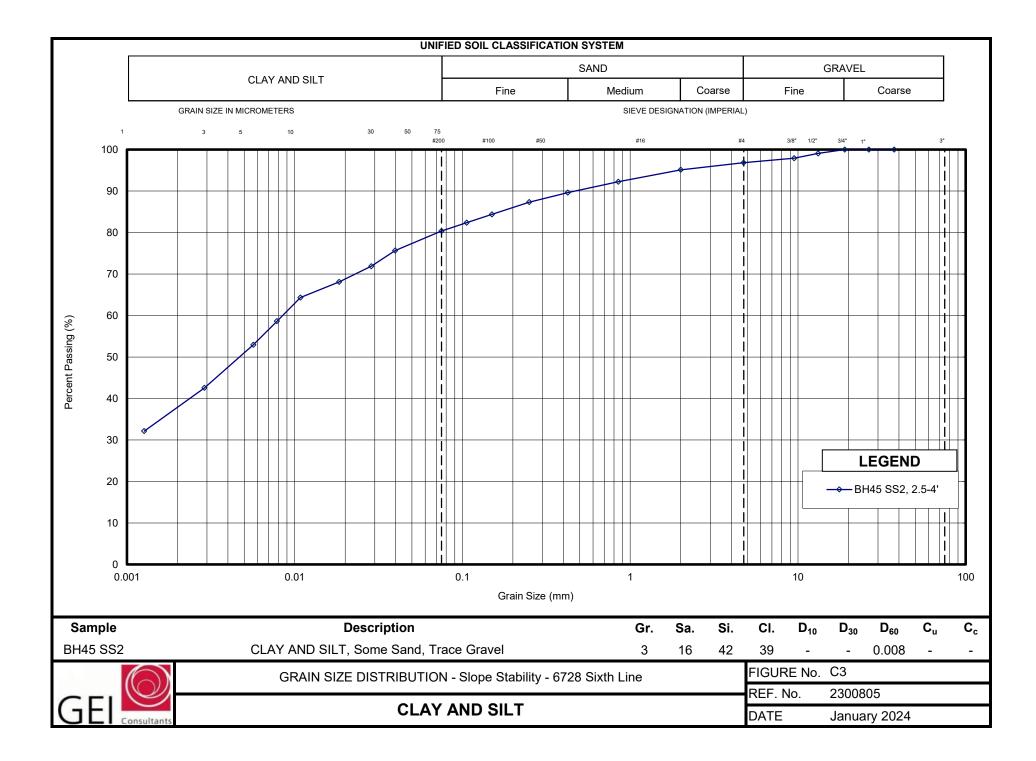
Drilling Method:	Solid Stem Aug	gers	Drilling Machine:	Track Mount	
Logged By:	SDP	Northing:	4821712	Date Started:	May 1/23
Reviewed By:	GW	Easting:	595698.9	Date Completed:	May 1/23

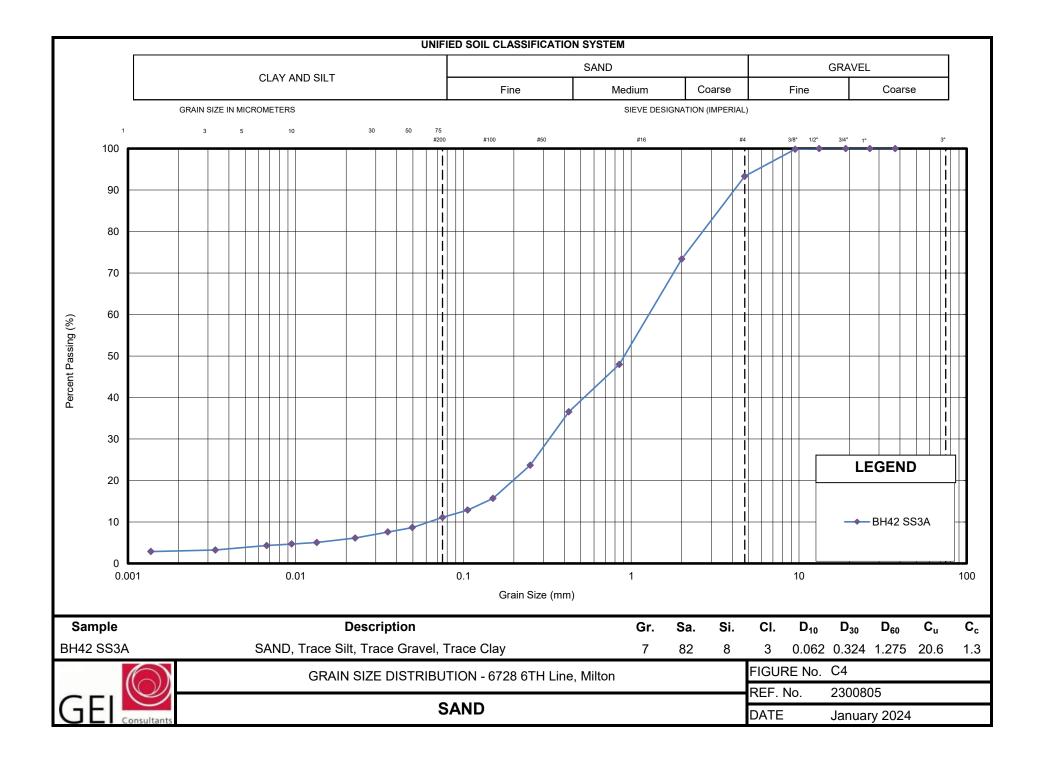
Local Benchmark:

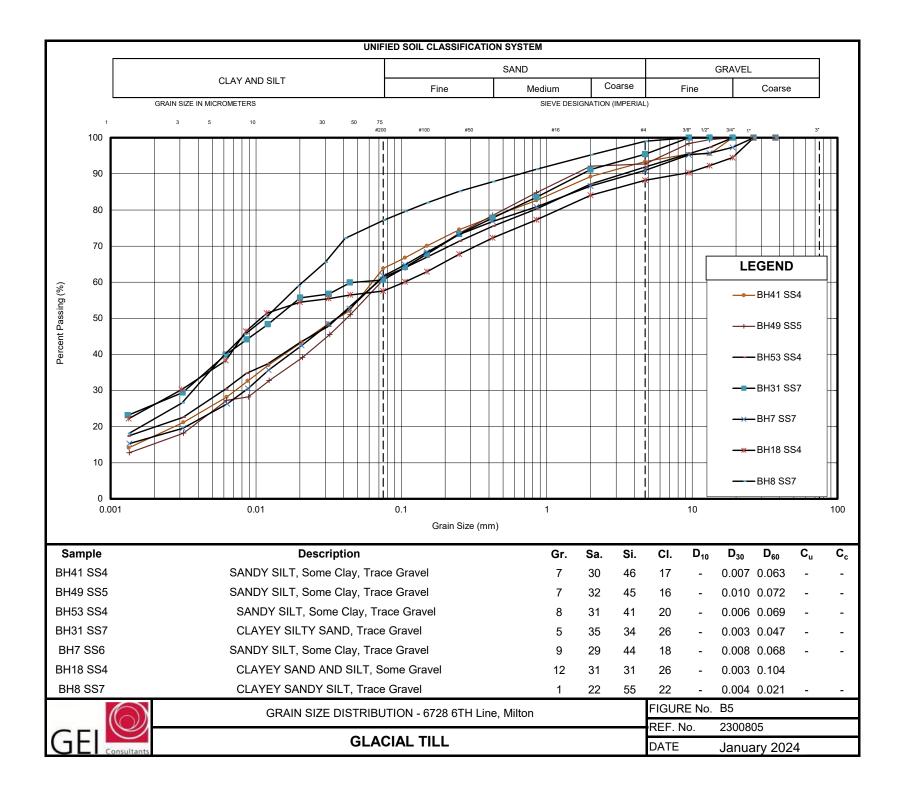

	LITHOLOGY PROFILE	SO		MPL	ING		FIELD TESTING	LAB TESTING		
							Shear Strength Testing (kPa)			COMMENTS &
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m) ELEVATION (m)	X Other Test + Pocket Penetrometer ▲ Field Vane (Intact) △ Field Vane (Remolded) 40 80 120 120 160		Instrumentation Installation	GRAIN SIZE DISTRIBUTION (%)
Litholo	0.0 183.7	Sample	Sample	Recove	SPT "N	DEPTH (m) ELEVATION	Penetration Testing ○ SPT ● DCPT 10 20 30 40	PL UL Water Content (%) 10 20 30 40	Instrun Installa	GR SA SI CL
×	0.0 183.7 1.2 TOPSOIL: 150 mm ^{183.6} FILL: Clayey silt, some sand, firm,	SS	1	65	4	Ĉ		0		
	brown, moist 1.0 Silty sand seam and gravel, wet	SS	2	100	13	¥	130	19 0		
	- SANDY SILT GLACIAL TILL: Some clay, trace gravel, inferred cobbles and	99	3	100	16	- 182	16 0			First Water Strike SS3
	boulders, compact to loose, brown, wet	SS	4	90	9	2-	90	11		
		SS	5	85	17	-	170	13		
		33	5	00	17	- 180				
	Damas					4-		q		
湖北	Dense 5.0 178.7 Borehole Terminated at 5.0 m	SS	6	100	36		360	9 C		
64	7 Welham Road, Unit 14				ncount oserve			ave depth after auger removal: Groundwater Elevation:	U.6 M.	
	T : (705) 719-7994 Borehole details p a qualified geotec	hnical e	enginee	er. Also,	boreho	thorough understa le information sho ttion of Boring Log	nnding of all potential conditions present a uld be read in conjunction with the geotec '.	nd require interpretative assistance from hnical report for which it was		Scale :1 :100

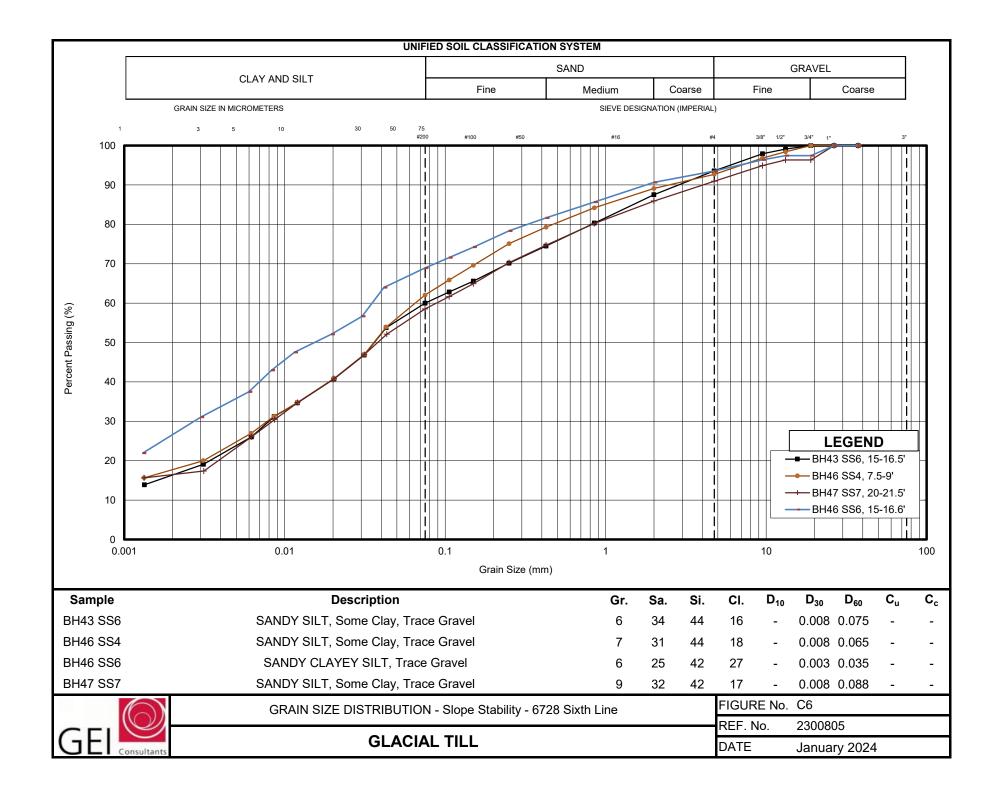
Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 17, 2024

Geotechnical Laboratory Testing






Atterberg Limits Report


Project Na Project No Client:	.:	Slope Stability - 2300805 Anatolia Investm		ation		Figure No Date Tes Date San	ted:	C2 June 8, 2023 -		
					APLE INFO	ORMATION				
SAMPLE	E ID	BH38	SS4	LIQUID LIMIT (LL):	27.5	PLASTIC LIMIT (PL)	15.7	PLASTIC INDEX (PI)	11.8	X
SAMPLE	EID	BH52	SS3	LIQUID LIMIT (LL):	35.9	PLASTIC LIMIT (PL)	18.7	PLASTIC INDEX (PI)	17.2	*
SAMPLE	E ID	BH11	SS3	LIQUID LIMIT (LL):	28.9	PLASTIC LIMIT (PL)	16.7	PLASTIC INDEX (PI)	12.2	+
				Pla	sticity (Chart				
	70	1								
										_
	60							A-Li	ne 🔪	
			CL					СН		
(II	50									
Plasticity Index (PI)										
city In	40									
lastic	30									
L										
	20			X				MH or O	H	
	10			ML or						
	0									
	Ŭ	0 10	20	30	40	50	60	70 80	90	100
					Liquid L	.imit (LL)				
DISTRIB	UTIO	N:		Prepared By	/: D. Gori	ry		Checked By:		

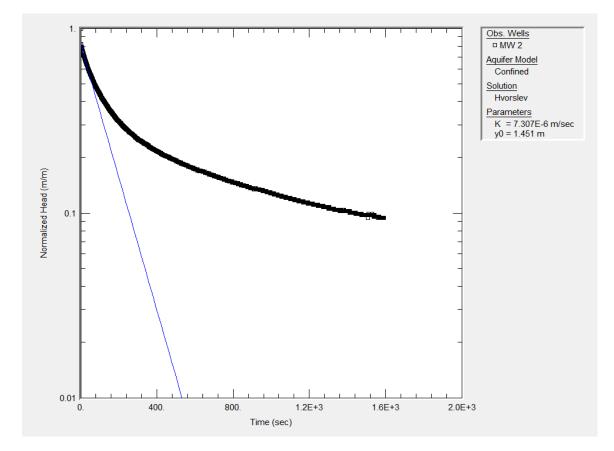
Report No.

Atterberg Limits Report

Project Na roject No.: Client:		6728 Sixth Line, Milton 2300805 Anatolia Investments Corporat			Figure N Date Tes Date San	ted:	C7 March 23, 2023 -		
				IPLE INFO	ORMATION		1		
SAMPLE	e ID	BH43 SS6, 15-16.6'	LIQUID LIMIT (LL):	20.4	PLASTIC LIMIT (PL)	13.8	PLASTIC INDEX (PI)	6.6	X
SAMPLE	e ID	BH45 SS2, 2.5-4'	LIQUID LIMIT (LL):	34	PLASTIC LIMIT (PL)	16.9	PLASTIC INDEX (PI)	17.1	
SAMPLE	e ID	BH46 SS4, 7.5-9'	LIQUID LIMIT (LL):	23.3	PLASTIC LIMIT (PL)	13.2	PLASTIC INDEX (PI)	10.1	0
SAMPLE	e ID	BH46 SS6, 15-16.6'	Liquid Limit (LL):	23.6	PLASTIC LIMIT (PL)	8.0	PLASTIC INDEX (PI)	15.6	+
	70		Plas	sticity (Chart				
	60	CL					CH A-Li	ne	
(Id)	50								
Plasticity Index (PI)	40								
lasticit	30								
Ľ	20				\downarrow		MH or O	н	
	10	CL-ML +							
	0		30	OL 40	50	60	70 80	90	100
		0 10 20			50 .imit (LL)	00	70 00	90	100
DISTRIB	UTIO	N:	Prepared By	: D. Gorı	гy		Checked By: M. H-C	abal	

Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 17, 2024

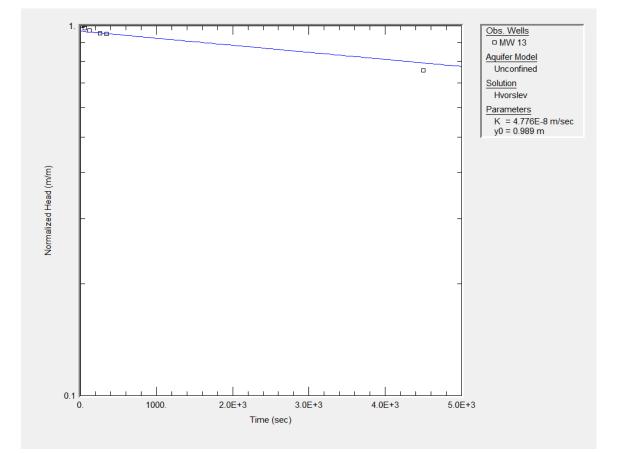
Hydraulic Conductivity Testing



Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 2024

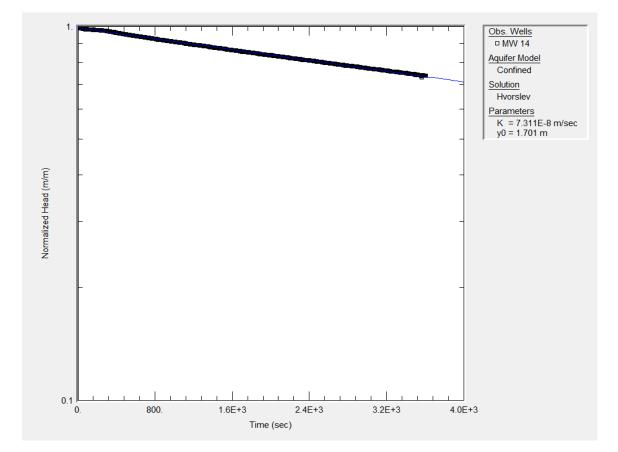
Date:	May 31, 2023
Conducted by:	S. Patrick

Well Number:	BH/MW 2	
Well Screen Bottom:	4.57	mbgs
Top of Pipe:	0.86	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	191.2	masl
Static Water Level:	0.71	mbgs
$K = r^2 \ln(L/R)/(2LTo) =$	7.3x10 ⁻⁶	m/s

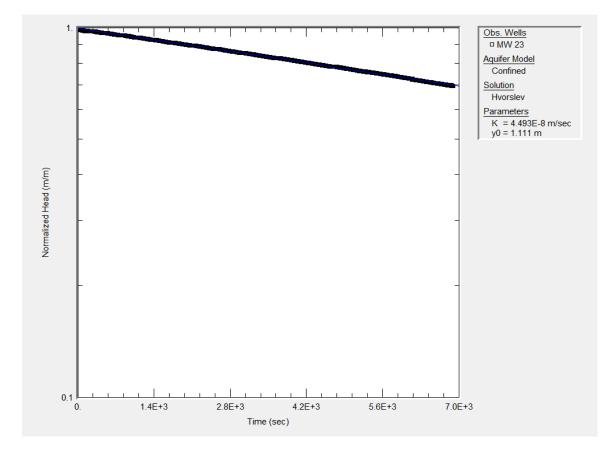


Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 2024

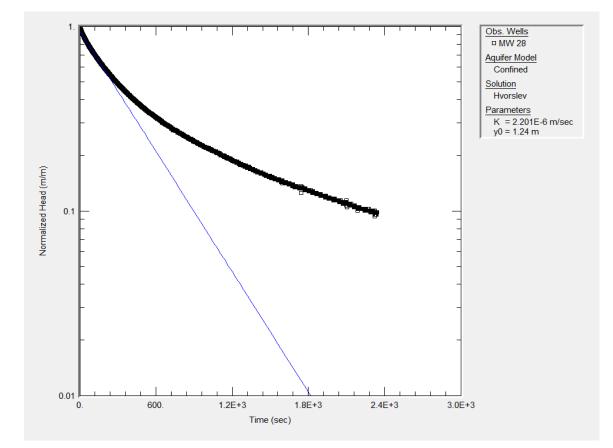
Date:	May 24, 2023
Conducted by:	S. Patrick


Well Number:	BH/MW 13	
Well Screen Bottom:	3.05	mbgs
Top of Pipe:	0.90	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	190.3	masl
Static Water Level:	0.99	mbgs
$K = r^2 ln(L/R)/(2LTo) =$	4.8x10 ⁻⁸	m/s

Date:	May 31, 2023
Conducted by:	S. Patrick


Well Number:	BH/MW 14	
Well Screen Bottom:	3.96	mbgs
Top of Pipe:	0.87	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	190.0	masl
Static Water Level:	0.59	mbgs
$K = r^2 ln(L/R)/(2LTo) =$	7.3x10 ⁻⁸	m/s

Date:	May 24, 2023
Conducted by:	S. Patrick

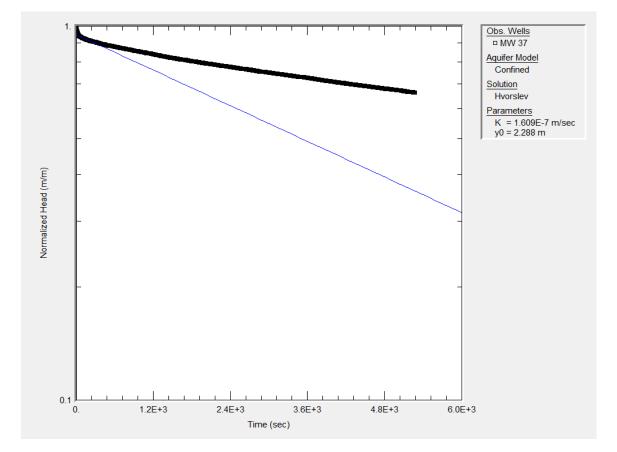

Well Number:	BH/MW 23	
Well Screen Bottom:	6.10	mbgs
Top of Pipe:	0.80	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	189.3	masl
Static Water Level:	2.77	mbgs
$K = r^2 ln(L/R)/(2LTo) =$	4.5x10 ⁻⁸	m/s

Date:	May 24, 2023
Conducted by:	S. Patrick

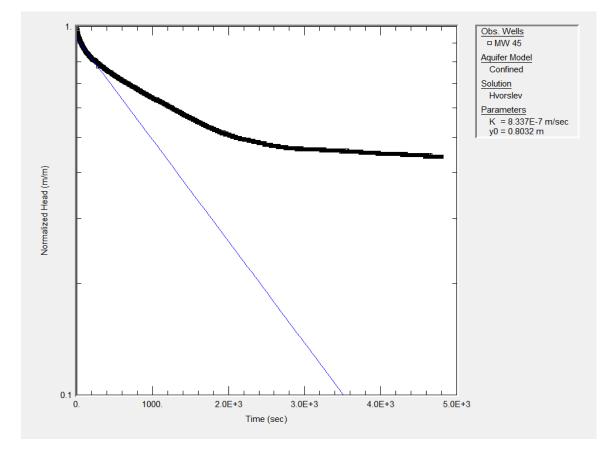
Well Number:	BH/MW 28	
Well Screen Bottom:	4.57	mbgs
Top of Pipe:	0.99	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	189.5	masl
Static Water Level:	0.94	mbgs
$K = r^2 ln(L/R)/(2LTo) =$	2.2x10 ⁻⁶	m/s

Hydrogeological Investigation Proposed Commercial Warehouse Development 6728 Sixth Line, Milton, Ontario Project No. 2300805, January 2024

Date:	May 24, 2023
Conducted by:	S. Patrick


Well Number:	BH/MW 35	
Well Screen Bottom:	3.05	mbgs
Top of Pipe:	0.95	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	191.4	masl
Static Water Level:	0.43	mbgs
$K = r^2 \ln(L/R)/(2LTo) =$	1.3x10 ⁻⁶	m/s

Date:	May 24, 2023
Conducted by:	S. Patrick


Well Number:	BH/MW 37	
Well Screen Bottom:	7.62	mbgs
Top of Pipe:	0.83	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	192.0	masl
Static Water Level:	1.96	mbgs
$K = r^2 ln(L/R)/(2LTo) =$	1.6x10 ⁻⁷	m/s

Date:	May 30, 2023
Conducted by:	S. Patrick

Well Number:	BH/MW 45	
Well Screen Bottom:	4.57	mbgs
Top of Pipe:	1.02	mags
Well Casing Diameter:	5.08	cm
Local Well Elevation:	188.5	masl
Static Water Level:	3.42	mbgs
$K = r^2 \ln(L/R)/(2LTo) =$	8.3x10 ⁻⁷	m/s

Water Quality Laboratory Certificate of Analysis and Chain of Custody

Certificate of Analysis

Environment Testing

Client:	GEI Consultants Inc.		Report Number:	1997699
	647 Welham Rd Unit 14		Date Submitted:	2023-06-01
	Barrie, ON		Date Reported:	2023-06-08
	L4N 0B7		Project:	2300805
Attention:	Ms. Sarah Griffith		COC #:	904774
PO#:				
Invoice to:	GEI Consultants Inc.	Page 1 of 8		

Dear Sarah Griffith:

🛟 eurofins

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Raheleh Zafari, Environmental Chemist

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: https://directory.cala.ca/.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997699
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904774

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1689689 WW 2023-05-30 MW23
Group	Analyte	MRL	Units	Guideline	
Anions	F	0.10	mg/L	MAC 10	0.38
	SO4	1	mg/L	MAC 1500	175
General Chemistry	BOD5	1	mg/L	MAC 300	<1
	Cyanide (total)	0.005	mg/L	MAC 2	<0.005
	рН	1.00		6.0-10.0	8.03
	Phenols	0.002	mg/L	MAC 1.0	<0.002
	Total Suspended Solids	2	mg/L	MAC 350	19
Mercury	Hg	0.0001	mg/L	MAC 0.05	<0.0001
Metals	Ag	0.01	mg/L	MAC 5	<0.01
	Al	0.1	mg/L	MAC 50	<0.1
	Aqua-Regia Digest		mg/L		У
	As	0.02	mg/L	MAC 1	<0.02
	Be	0.01	mg/L	MAC 5	<0.01
	Cd	0.008	mg/L	MAC 1.0	<0.008
	Со	0.01	mg/L	MAC 5	<0.01
	Cr	0.05	mg/L	MAC 3	<0.05
	Cu	0.01	mg/L	MAC 3	<0.01
	Fe	0.1	mg/L	MAC 50	0.1
	Mn	0.01	mg/L	MAC 5	0.16
	Мо	0.01	mg/L	MAC 5	<0.01
	Ni	0.01	mg/L	MAC 3	<0.01
	Pb	0.01	mg/L	MAC 3	<0.01
	Sb	0.01	mg/L	MAC 5	<0.01
	Se	0.02	mg/L	MAC 5	<0.02
	Sn	0.1	mg/L	MAC 5	<0.1

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

Report Number:	1997699
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904774

	• • • •			Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1689689 WW 2023-05-30 MW23
Group	Analyte	MRL	Units	Guideline	<u> </u>
Metals	Ti	0.1	mg/L	MAC 5	<0.1
	Zn	0.04	mg/L	MAC 3	0.05
Microbiology	Escherichia Coli	0	ct/100mL		0
Nutrients	Total Kjeldahl Nitrogen	0.100	mg/L	MAC 100	0.170
	Total P	0.020	mg/L	MAC 10	<0.020
Oil and Grease	Oil & Grease - Mineral	1	mg/L	MAC 15	<1
	Oil & Grease - Non-mineral	1	mg/L	MAC 150	<1
	Oil & Grease - Total	1	mg/L		<1
PAH	Naphthalene	0.1	ug/L	MAC 140	<0.1
VOCs Surrogates	1,2-dichloroethane-d4	0	%		119
	4-bromofluorobenzene	0	%		100
	Toluene-d8	0	%		96
Volatiles	1,4-dichlorobenzene	0.4	ug/L	MAC 80	<0.4
	Benzene	0.5	ug/L	MAC 10	<0.5
	Chloroform	0.5	ug/L	MAC 40	<0.5
	Dichloromethane	4.0	ug/L	MAC 2000	<4.0
	Ethylbenzene	0.5	ug/L	MAC 160	<0.5
	Tetrachloroethylene	0.3	ug/L	MAC 1000	<0.3
	Toluene	0.4	ug/L	MAC 16	<0.4
	Trichloroethylene	0.3	ug/L	MAC 400	<0.3

Guideline = Sanitary Sewer - Halton

🛟 eurofins

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997699
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904774

QC Summary

Analyte		Blank		QC % Rec	QC Limits
Run No442075Analysis/ExMethodP 8270	xtraction Date 20	023-06-07	Analy	yst CM	
Naphthalene		<0.1 ug/L		58	50-140
Run No 442783 Analysis/Ex Method AMBCOLM1	xtraction Date 20	023-06-03	Analy	yst DRA	
Escherichia Coli					
Run No442812Analysis/ExMethodSM 5210B	xtraction Date 20	023-06-07	Analy	yst ME	
BOD5		<1 mg/L		98	75-125
Run No 442816 Analysis/Ex Method SM2320,2510,4500H/F	xtraction Date 20	023-06-03	Analy	yst AsA	
F		<0.10 mg/L		101	90-110
рН				100	90-110
Run No442840Analysis/ExMethodEPA 365.1	xtraction Date 20	023-06-05	Analy	yst SKH	
Total P		<0.020 mg/L		104	80-120
Run No442853Analysis/ExMethodEPA 351.2	xtraction Date 20	023-06-05	Analy	yst SKH	
Total Kjeldahl Nitrogen		<0.100 mg/L		111	70-130

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997699
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904774

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 442859 Analysis/Extraction Date 20 Method SM4500-CNC/MOE E3015	23-06-05 Ana	lyst ZS	
Cyanide (total)	<0.005 mg/L	84	61-139
Run No 442864 Analysis/Extraction Date 20 Method EPA 8260	23-06-03 Ana	lyst PJ	
Dichlorobenzene, 1,4-	<0.4 ug/L	100	60-130
Benzene	<0.5 ug/L	84	60-130
Chloroform	<0.5 ug/L	103	60-130
Methylene Chloride	<4.0 ug/L	107	60-130
Ethylbenzene	<0.5 ug/L	80	60-130
Tetrachloroethylene	<0.3 ug/L	110	60-130
Toluene	<0.4 ug/L	108	60-130
Trichloroethylene	<0.3 ug/L	99	60-130
Run No442896Analysis/Extraction Date20MethodC SM2540	23-06-06 Ana	lyst RT	
Total Suspended Solids	<2 mg/L	98	90-110
Run No442920Analysis/Extraction Date20MethodEPA 200.8	23-06-06 Ana	lyst SD	
Silver	<0.01 mg/L	100	70-130

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

1997699
2023-06-01
2023-06-08
2300805
904774

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Aluminum	<0.1 mg/L	91	70-130
Arsenic	<0.02 mg/L	91	70-130
Beryllium	<0.01 mg/L	87	70-130
Cadmium	<0.008 mg/L	91	70-130
Cobalt	<0.01 mg/L	94	70-130
Chromium Total	<0.05 mg/L	96	70-130
Copper	<0.01 mg/L	101	70-130
Iron	<0.1 mg/L	82	70-130
Manganese	<0.01 mg/L	97	70-130
Molybdenum	<0.01 mg/L	88	70-130
Nickel	<0.01 mg/L	96	70-130
Lead	<0.01 mg/L	93	70-130
Antimony	<0.01 mg/L	97	70-130
Selenium	<0.02 mg/L	93	70-130
Sn	<0.1 mg/L	75	70-130
Titanium	<0.1 mg/L	77	70-130
Run No 442945 Analysis/Extraction Date 2023-06-06 Analyst IP Method SM5530D/EPA420.2 SM5530D/EPA420.2 IP IP			

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997699
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904774

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Phenols	<0.002 mg/L	103	50-120
Run No 442981 Analysis/Extraction Date 20 Method SM 4110	023-06-06 Ana	ilyst AaN	
SO4	<1 mg/L	100	90-110
Run No443046Analysis/Extraction Date20MethodEPA 200.8	023-06-07 Ana	ilyst AaN	
Aqua-Regia Digest	0 mg/L		
Zinc	<0.04 mg/L	109	70-130
Run No 443065 Analysis/Extraction Date 20 Method SM 5520B/F)23-06-08 Ana	ilyst ACN	
Oil & Grease - Mineral	<1 mg/L	120	70-130
Oil & Grease - Non-mineral	<1 mg/L		70-130
Oil & Grease - Total	<1 mg/L	115	70-130
Run No 443106 Analysis/Extraction Date 20 Method M SM3112B-3500B)23-06-08 Ana	ilyst AaN	
Mercury	<0.0001 mg/L	108	76-123

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

Report Number:	1997699
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904774

Sample Comment Summary

Sample ID: 1689689 MW23 Phenols MRL elevated due to matrix interference (dilution was done). Deviation from standard protocol, bacti analysis past hold time.

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Environment Testing

Client:	El Consultants Inc.		Report Number:	1997702
	7 Welham Rd Unit 14		Date Submitted:	2023-06-01
	rrie, ON		Date Reported:	2023-06-08
	N 0B7		,	2300805
Attention:	s. Sarah Griffith		COC #:	904775
PO#:				
Invoice to:	El Consultants Inc.	Page 1 of 8		
PO#:	N 0B7 Sarah Griffith	Page 1 of 8	Project: COC #:	230080

Dear Sarah Griffith:

🛟 eurofins

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Raheleh Zafari, Environmental Chemist

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: https://directory.cala.ca/.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997702
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904775

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1689692 WW 2023-05-30 MW37
Group	Analyte	MRL	Units	Guideline	
Anions	F	0.10	mg/L	MAC 10	0.26
	SO4	1	mg/L	MAC 1500	172
General Chemistry	BOD5	1	mg/L	MAC 300	<1
	Cyanide (total)	0.005	mg/L	MAC 2	<0.005
	рН	1.00		6.0-10.0	8.00
	Phenols	0.002	mg/L	MAC 1.0	<0.002
	Total Suspended Solids	2	mg/L	MAC 350	163
Mercury	Hg	0.0001	mg/L	MAC 0.05	<0.0001
Metals	Ag	0.01	mg/L	MAC 5	<0.01
	Al	0.1	mg/L	MAC 50	3.8
	Aqua-Regia Digest		mg/L		У
	As	0.02	mg/L	MAC 1	<0.02
	Be	0.01	mg/L	MAC 5	<0.01
	Cd	0.008	mg/L	MAC 1.0	<0.008
	Со	0.01	mg/L	MAC 5	<0.01
	Cr	0.05	mg/L	MAC 3	<0.05
	Cu	0.01	mg/L	MAC 3	0.02
	Fe	0.1	mg/L	MAC 50	1.6
	Mn	0.01	mg/L	MAC 5	0.17
	Мо	0.01	mg/L	MAC 5	<0.01
	Ni	0.01	mg/L	MAC 3	<0.01
	Pb	0.01	mg/L	MAC 3	0.01
	Sb	0.01	mg/L	MAC 5	<0.01
	Se	0.02	mg/L	MAC 5	<0.02
	Sn	0.1	mg/L	MAC 5	<0.1

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.	
	647 Welham Rd Unit 14	
	Barrie, ON	
	L4N 0B7	
Attention:	Ms. Sarah Griffith	
PO#:		
Invoice to:	GEI Consultants Inc.	
Attention: PO#:	L4N 0B7 Ms. Sarah Griffith	

🛟 eurofins

Report Number:	1997702
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904775

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1689692 WW 2023-05-30 MW37
Group	Analyte	MRL	Units	Guideline	
Metals	Ti	0.1	mg/L	MAC 5	<0.1
	Zn	0.04	mg/L	MAC 3	<0.04
Microbiology	Escherichia Coli	0	ct/100mL		0
Nutrients	Total Kjeldahl Nitrogen	0.100	mg/L	MAC 100	0.306
	Total P	0.020	mg/L	MAC 10	0.060
Oil and Grease	Oil & Grease - Mineral	1	mg/L	MAC 15	<1
	Oil & Grease - Non-mineral	1	mg/L	MAC 150	<1
	Oil & Grease - Total	1	mg/L		<1
PAH	Naphthalene	0.1	ug/L	MAC 140	<0.1
VOCs Surrogates	1,2-dichloroethane-d4	0	%		103
	4-bromofluorobenzene	0	%		77
	Toluene-d8	0	%		95
Volatiles	1,4-dichlorobenzene	0.4	ug/L	MAC 80	<0.4
	Benzene	0.5	ug/L	MAC 10	<0.5
	Chloroform	0.5	ug/L	MAC 40	<0.5
	Dichloromethane	4.0	ug/L	MAC 2000	<4.0
	Ethylbenzene	0.5	ug/L	MAC 160	<0.5
	Tetrachloroethylene	0.3	ug/L	MAC 1000	<0.3
	Toluene	0.4	ug/L	MAC 16	<0.4
	Trichloroethylene	0.3	ug/L	MAC 400	<0.3

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997702
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904775

QC Summary

Analyte		Blank		QC % Rec	QC Limits
Run No442075Analysis/ExMethodP 8270	xtraction Date 20	023-06-07	Analy	yst CM	
Naphthalene		<0.1 ug/L		58	50-140
Run No 442783 Analysis/Ex Method AMBCOLM1	xtraction Date 20	023-06-03	Analy	yst DRA	
Escherichia Coli					
Run No442812Analysis/ExMethodSM 5210B	xtraction Date 20	023-06-07	Analy	yst ME	
BOD5		<1 mg/L		98	75-125
Run No 442816 Analysis/Ex Method SM2320,2510,4500H/F	xtraction Date 20	023-06-03	Analy	yst AsA	
F		<0.10 mg/L		101	90-110
рН				100	90-110
Run No442840Analysis/ExMethodEPA 365.1	xtraction Date 20	023-06-05	Analy	yst SKH	
Total P		<0.020 mg/L		104	80-120
Run No442853Analysis/ExMethodEPA 351.2	xtraction Date 20	023-06-05	Analy	yst SKH	
Total Kjeldahl Nitrogen		<0.100 mg/L		111	70-130

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997702
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904775

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 442859 Analysis/Extraction Date 20 Method SM4500-CNC/MOE E3015 20	23-06-05 Ana	lyst ZS	
Cyanide (total)	<0.005 mg/L	84	61-139
Run No 442864 Analysis/Extraction Date 20 Method EPA 8260	23-06-03 Ana	lyst PJ	
Dichlorobenzene, 1,4-	<0.4 ug/L	100	60-130
Benzene	<0.5 ug/L	84	60-130
Chloroform	<0.5 ug/L	103	60-130
Methylene Chloride	<4.0 ug/L	107	60-130
Ethylbenzene	<0.5 ug/L	80	60-130
Tetrachloroethylene	<0.3 ug/L	110	60-130
Toluene	<0.4 ug/L	108	60-130
Trichloroethylene	<0.3 ug/L	99	60-130
Run No 442896 Analysis/Extraction Date 2023-06-06 Analyst R T Method C SM2540			
Total Suspended Solids	<2 mg/L	98	90-110
Run No442920Analysis/Extraction Date20MethodEPA 200.8	123-06-06 Ana	lyst SD	
Silver	<0.01 mg/L	100	70-130

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

1997702
2023-06-01
2023-06-08
2300805
904775

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Aluminum	<0.1 mg/L	91	70-130
Arsenic	<0.02 mg/L	91	70-130
Beryllium	<0.01 mg/L	87	70-130
Cadmium	<0.008 mg/L	91	70-130
Cobalt	<0.01 mg/L	94	70-130
Chromium Total	<0.05 mg/L	96	70-130
Copper	<0.01 mg/L	101	70-130
Iron	<0.1 mg/L	82	70-130
Manganese	<0.01 mg/L	97	70-130
Molybdenum	<0.01 mg/L	88	70-130
Nickel	<0.01 mg/L	96	70-130
Lead	<0.01 mg/L	93	70-130
Antimony	<0.01 mg/L	97	70-130
Selenium	<0.02 mg/L	93	70-130
Sn	<0.1 mg/L	75	70-130
Titanium	<0.1 mg/L	77	70-130
Run No 442945 Analysis/Extraction Date 2023-06-06 Analyst IP Method SM5530D/EPA420.2 IP IP<			

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997702
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904775

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Phenols	<0.002 mg/L	103	50-120
Run No 443041 Analysis/Extraction Date 20 Method SM 4110)23-06-08 Ana	ilyst AaN	
SO4	<1 mg/L	95	90-110
Run No443046Analysis/Extraction Date20MethodEPA 200.8	023-06-07 Ana	ilyst AaN	
Aqua-Regia Digest	0 mg/L		
Zinc	<0.04 mg/L	109	70-130
Run No 443065 Analysis/Extraction Date 20 Method SM 5520B/F	023-06-08 Ana	ilyst ACN	
Oil & Grease - Mineral	<1 mg/L	120	70-130
Oil & Grease - Non-mineral	<1 mg/L		70-130
Oil & Grease - Total	<1 mg/L	115	70-130
Run No 443106 Analysis/Extraction Date 20 Method M SM3112B-3500B	023-06-08 Ana	llyst AaN	
Mercury	<0.0001 mg/L	108	76-123

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.	
	647 Welham Rd Unit 14	
	Barrie, ON	
	L4N 0B7	
Attention:	Ms. Sarah Griffith	
PO#:		
Invoice to:	GEI Consultants Inc.	

 Report Number:
 1997702

 Date Submitted:
 2023-06-01

 Date Reported:
 2023-06-08

 Project:
 2300805

 COC #:
 904775

Sample Comment Summary

Sample ID: 1689692 MW37 Phenols MRL elevated due to matrix interference (dilution was done). Deviation from standard protocol, bacti analysis past hold time.

Guideline = Sanitary Sewer - Halton

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.
PO#:	
	Attention:

Report Number: Date Submitted: Date Reported: Project: COC #: Temperature (C): Custody Seal:

Page 1 of 11

Dear Sarah Griffith:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Raheleh Zafari, Environmental Chemist

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated

Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997730

 Date Submitted:
 2023-06-01

 Date Reported:
 2023-06-07

 Project:
 2300805

 COC #:
 904776

Exceedence Summary

Sample I.D.	Analyte	Result	Units	Criteria

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

MRL

20

20

20

50

50

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

Guideline = O.Reg 153-T1-Groundwater

Batch No

442864

442894

443014

443014

443014

Hydrocarbons

Analyte

PHC's F1

PHC's F1-BTEX

PHC's F2

PHC's F3

PHC's F4

Lab Sam Sam Sam Sam Sam	1689789 GW153 2023-05-30 MW23	
ug/L	STD 420	<20
ug/L		<20
ug/L	STD 150	<20
ug/L	STD 500	<50
ug/L	STD 500	<50

Lab I.D.

Sample Matrix

Sample Type

Γ

1689789

GW153

			Sam Sam	aple Type aple Date apling Time aple I.D.	2023-05-30 MW23
Analyte B	atch No	MRL	Units C	Guideline	
Acetone	442864	5	ug/L	STD 2700	<5
Benzene	442864	0.5	ug/L	STD 0.5	<0.5
Bromodichloromethane	442864	0.3	ug/L	STD 2	<0.3
Bromoform	442864	0.4	ug/L	STD 5	<0.4
Bromomethane	442864	0.5	ug/L	STD 0.89	<0.5
Carbon Tetrachloride	442864	0.2	ug/L	STD 0.2	<0.2
Chlorobenzene	442864	0.5	ug/L	STD 0.5	<0.5
Chloroform	442864	0.5	ug/L	STD 2	<0.5
Dibromochloromethane	442864	0.3	ug/L	STD 2	<0.3
Dichlorobenzene, 1,2-	442864	0.4	ug/L	STD 0.5	<0.4
Dichlorobenzene, 1,3-	442864	0.4	ug/L	STD 0.5	<0.4
Dichlorobenzene, 1,4-	442864	0.4	ug/L	STD 0.5	<0.4
Dichlorodifluoromethane	442864	0.5	ug/L	STD 590	<0.5

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Report Number:	199773
Date Submitted:	2023-06
Date Reported:	2023-06
Project:	230080
COC #:	904776

30 6-01 6-07)5 904776

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

Guideline = O.Reg 153-T1-Groundwater

<u>Volatiles</u>			Lab Sam Sam Sam Sam Sam	ple Matrix ple Type ple Date pling Time ple I.D.	1689789 GW153 2023-05-30 MW23
Analyte	Batch No	MRL	Units C	Suideline	
Dichloroethane, 1,1-	442864	0.4	ug/L	STD 0.5	<0.4
Dichloroethane, 1,2-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloroethylene, 1,1-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloroethylene, 1,2-cis-	442864	0.4	ug/L	STD 1.6	<0.4
Dichloroethylene, 1,2-trans-	442864	0.4	ug/L	STD 1.6	<0.4
Dichloropropane, 1,2-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloropropene,1,3-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloropropene,1,3-cis-	442864	0.5	ug/L		<0.5
Dichloropropene,1,3-trans-	442864	0.5	ug/L		<0.5
Ethylbenzene	442864	0.5	ug/L	STD 0.5	<0.5
Ethylene dibromide	442864	0.2	ug/L	STD 0.2	<0.2
Hexane (n)	442864	5	ug/L	STD 5	<5
Methyl Ethyl Ketone	442864	2	ug/L	STD 400	<2
Methyl Isobutyl Ketone	442864	5	ug/L	STD 640	<5
Methyl tert-Butyl Ether (MTBE)	442864	2	ug/L	STD 15	<2
Methylene Chloride	442864	4.0	ug/L	STD 5	<4.0
Styrene	442864	0.5	ug/L	STD 0.5	<0.5
Tetrachloroethane, 1,1,1,2-	442864	0.5	ug/L	STD 1.1	<0.5
Tetrachloroethane, 1,1,2,2-	442864	0.5	ug/L	STD 0.5	<0.5
Tetrachloroethylene	442864	0.3	ug/L	STD 0.5	<0.3
Toluene	442864	0.4	ug/L	STD 0.8	<0.4
Trichloroethane, 1,1,1-	442864	0.4	ug/L	STD 0.5	<0.4
Trichloroethane, 1,1,2-	442864	0.4	ug/L	STD 0.5	<0.4

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Report Number:	1997730
Date Submitted:	2023-06-01
Date Reported:	2023-06-07
Project:	2300805
COC #:	904776

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

Guideline = O.Reg 153-T1-Groundwater

Report Number:

1997730 Date Submitted: 2023-06-01 Date Reported: 2023-06-07 Project: 2300805 COC #: 904776

		nawater			
<u>Volatiles</u>	Lab I.D. Sample Mat Sample Typ Sample Date Sampling Tir Sample I.D.		ple Matrix ple Type ple Date pling Time	1689789 GW153 2023-05-30 MW23	
Analyte B	atch No	MRL	Units 0	Buideline	
Trichloroethylene	442864	0.3	ug/L	STD 0.5	<0.3
Trichlorofluoromethane	442864	0.5	ug/L	STD 150	<0.5
Vinyl Chloride	442864	0.2	ug/L	STD 0.5	<0.2
Xylene Mixture	442872	0.5	ug/L	STD 72	<0.5
Xylene, m/p-	442864	0.4	ug/L		<0.4
Xylene, o-	442864	0.4	ug/L		<0.4
PHC Surrogate			Sam Sam	I.D. ple Matrix ple Type ple Date	1689789 GW153 2023-05-30

				າpling Time າple I.D.	MW23
Analyte Ba	atch No	MRL	Units 0	Guideline	
Alpha-androstrane	443014	0	%		105

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997730

 Date Submitted:
 2023-06-01

 Date Reported:
 2023-06-07

 Project:
 2300805

 COC #:
 904776

Guideline = O.Reg 153-	T1-Grou	ndwater	,					
VOCs Surrogates Lab I.D. Sample Matrix Sample Type Sample Date Sampling Time Sample I.D. Sample I.D.								
Analyte B	atch No	MRL	Units	Guideline				
1,2-dichloroethane-d4	442864	0	%		110			
4-bromofluorobenzene	442864	0	%		77			
Toluene-d8	442864	0	%		97			

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997

 Date Submitted:
 2023

 Date Reported:
 2023

 Project:
 2300

 COC #:
 9047

1997730 2023-06-01 2023-06-07 2300805 904776

Quality	Assurance	Summary
---------	-----------	---------

Batch No	Analyte	Blank	QC % Rec	QC Limits	Spike % Rec	Spike Limits	Dup % RPD	Duplicate Limits
442864	Tetrachloroethane, 1,1,1,2-	<0.5 ug/L	88	60-130	109	50-140	0	0-30
442864	Trichloroethane, 1,1,1-	<0.4 ug/L	81	60-130	113	50-140	0	0-30
442864	Tetrachloroethane, 1,1,2,2-	<0.5 ug/L	109	60-130	110	50-140	0	0-30
442864	Trichloroethane, 1,1,2-	<0.4 ug/L	87	60-130	107	50-140	0	0-30
442864	Dichloroethane, 1,1-	<0.4 ug/L	102	60-130	119	50-140	0	0-30
442864	Dichloroethylene, 1,1-	<0.5 ug/L	91	60-130	112	50-140	0	0-30
442864	Dichlorobenzene, 1,2-	<0.4 ug/L	104	60-130	102	50-140	0	0-30
442864	Dichloroethane, 1,2-	<0.5 ug/L	82	60-130	124	50-140	0	0-30
442864	Dichloropropane, 1,2-	<0.5 ug/L	82	60-130	120	50-140	0	0-30
442864	Dichlorobenzene, 1,3-	<0.4 ug/L	100	60-130	101	50-140	0	0-30
442864	Dichloropropene,1,3-							
442864	Dichlorobenzene, 1,4-	<0.4 ug/L	100	60-130	101	50-140	0	0-30
442864	Acetone	<5 ug/L	80	60-130	71	50-140	0	0-30
442864	Benzene	<0.5 ug/L	84	60-130	120	50-140	0	0-30
442864	Bromodichloromethane	<0.3 ug/L	102	60-130	121	50-140	0	0-30
442864	Bromoform	<0.4 ug/L	84	60-130	101	50-140	0	0-30
442864	Bromomethane	<0.5 ug/L	101	60-130	112	50-140	0	0-30
442864	Dichloroethylene, 1,2-cis-	<0.4 ug/L	110	60-130	119	50-140	0	0-30
442864	Dichloropropene,1,3-cis-	<0.5 ug/L	102	60-130	112	50-140	0	0-30
442864	Carbon Tetrachloride	<0.2 ug/L	83	60-130	113	50-140	0	0-30
442864	Chloroform	<0.5 ug/L	103	60-130	119	50-140	0	0-30
442864	Dibromochloromethane	<0.3 ug/L	83	60-130	103	50-140	0	0-30
442864	Dichlorodifluoromethane	<0.5 ug/L	92	60-130	101	50-140	0	0-30
442864	Methylene Chloride	<4.0 ug/L	107	60-130	103	50-140	0	0-30
442864	Ethylbenzene	<0.5 ug/L	80	60-130	112	50-140	0	0-30
442864	Ethylene dibromide	<0.2 ug/L	89	60-130	100	50-140	0	0-30
442864	PHC's F1	<20 ug/L	92	60-140	87	60-140	0	0-30
442864	Hexane (n)	<5 ug/L	100	60-130	107	50-140	0	0-30
442864	Xylene, m/p-	<0.4 ug/L	102	60-130	112	50-140	0	0-30
442864	Methyl Ethyl Ketone	<2 ug/L	120	60-130	121	50-140	0	0-30
442864	Methyl Isobutyl Ketone	<5 ug/L	110	60-130	107	50-140	0	0-30
442864	Methyl tert-Butyl Ether (MTBE)	<2 ug/L	100	60-130	114	50-140	0	0-30

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

Report Number: Date Submitted: Date Reported: Project: COC #:

1997730 2023-06-01 2023-06-07 2300805 904776

Batch No	Analyte	Blank	QC % Rec	QC Limits	Spike % Rec	Spike Limits	Dup % RPD	Duplicate Limits
442864	Chlorobenzene	<0.5 ug/L	83	60-130	109	50-140	0	0-30
442864	Xylene, o-	<0.4 ug/L	102	60-130	113	50-140	0	0-30
442864	Styrene	<0.5 ug/L	99	60-130	111	50-140	0	0-30
442864	Dichloroethylene, 1,2-trans-	<0.4 ug/L	103	60-130	118	50-140	0	0-30
442864	Dichloropropene,1,3-trans-	<0.5 ug/L	96	60-130	111	50-140	0	0-30
442864	Tetrachloroethylene	<0.3 ug/L	110	60-130	112	50-140	0	0-30
442864	Toluene	<0.4 ug/L	108	60-130	125	50-140	0	0-30
442864	Trichloroethylene	<0.3 ug/L	99	60-130	112	50-140	0	0-30
442864	Trichlorofluoromethane	<0.5 ug/L	110	60-130	105	50-140	0	0-30
442864	Vinyl Chloride	<0.2 ug/L	99	60-130	111	50-140	0	0-30
442872	Xylene Mixture							
442894	PHC's F1-BTEX							
443014	PHC's F2	<20 ug/L	80	60-140		60-140		0-30
443014	PHC's F3	<50 ug/L	80	60-140		60-140		0-30
443014	PHC's F4	<50 ug/L	80	60-140		60-140		0-30

Quality Assurance Summary

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997730

 Date Submitted:
 2023-06-01

 Date Reported:
 2023-06-07

 Project:
 2300805

 COC #:
 904776

Test Summary

Batch No	Analyte	Instrument	Prep aration Date	Analysis Date	Analyst	Method
442864	Tetrachloroethane, 1,1,1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichloroethane, 1,1,1-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Tetrachloroethane, 1,1,2,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichloroethane, 1,1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethane, 1,1-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethylene, 1,1-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichlorobenzene, 1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethane, 1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropane, 1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichlorobenzene, 1,3-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropene,1,3-	GC-MS	2023-06-02	2023-06-02	PJ	EPA 8260
442864	Dichlorobenzene, 1,4-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Acetone	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Benzene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Bromodichloromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Bromoform	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Bromomethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethylene, 1,2-cis-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropene,1,3-cis-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Carbon Tetrachloride	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Chloroform	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dibromochloromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichlorodifluoromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methylene Chloride	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Ethylbenzene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Ethylene dibromide	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	PHC's F1	GC/FID	2023-06-02	2023-06-02	PJ	CCME O.Reg 153/04
442864	Hexane (n)	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Xylene, m/p-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methyl Ethyl Ketone	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methyl Isobutyl Ketone	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methyl tert-Butyl Ether (MTBE)	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

Report Number: Date Submitted: Date Reported: Project: COC #:

1997730 2023-06-01 2023-06-07 2300805 904776

Test Summary

Batch No	Analyte	Instrument	Prep aration Date	Analysis Date	Analyst	Method
442864	Chlorobenzene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Xylene, o-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Styrene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethylene, 1,2-trans-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropene,1,3-trans-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Tetrachloroethylene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Toluene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichloroethylene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichlorofluoromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Vinyl Chloride	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442872	Xylene Mixture	GC-MS	2023-06-05	2023-06-05	PJ	EPA 8260
442894	PHC's F1-BTEX	GC/FID	2023-06-05	2023-06-05	PJ	CCME O.Reg 153/04
443014	PHC's F2	GC/FID	2023-06-07	2023-06-07	SS	CCME O.Reg 153/04
443014	PHC's F3	GC/FID	2023-06-07	2023-06-07	SS	CCME O.Reg 153/04
443014	PHC's F4	GC/FID	2023-06-07	2023-06-07	SS	CCME O.Reg 153/04

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997730

 Date Submitted:
 2023-06-01

 Date Reported:
 2023-06-07

 Project:
 2300805

 COC #:
 904776

CWS for Petroleum Hydrocarbons in Soil - Tier 1

Notes:

- 1. The laboratory method complies with CCME Tier 1 reference method for PHC in soil. It is validated for laboratory use.
- 2. Where the F1 fraction (C6 to C10) and BTEX are both measured, F1-BTEX is reported.
- 3. Where the F2 fraction (C10 to C16) and naphthalene are both measured, F2-naphthalene is reported.
- 4. Where the F3 fraction (C16 to C34) and PAHs* are both measured, F3-PAH is reported.
- 5. F4G is analyzed if the chromatogram does not descend to baseline before C50. Where F4 (C34 to C50) and F4G are both reported, the higher result is compared to the standard.
- 6. Unless otherwise stated in the sample comments, the following criteria have been met where applicable:
 - nC6 and nC10 response factors within 30% of response factor for toluene;
 - nC10, nC16, and nC34 response factors within 10% of each other;
 - C50 response factors within 70% of nC10 + nC16 + nC34 average; and,
 - Linearity is within 15%.
- 7. Unless otherwise stated in the sample comments, sampling requirements and analytical holding times have been met.
- 8. Gravimetric heavy hydrocarbons (F4G) cannot be added to the C6 and C50 hydrocarbons.
- 9. *PAHs = phenanthrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene and pyrene.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.
PO#:	

Report Number: Date Submitted: Date Reported: Project: COC #: Temperature (C): Custody Seal:

Page 1 of 11

Dear Sarah Griffith:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Raheleh Zafari, Environmental Chemist

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated

Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997731

 Date Submitted:
 2023-06-01

 Date Reported:
 2023-06-07

 Project:
 2300805

 COC #:
 904777

Exceedence Summary

Sample I.D.	Analyte	Result	Units	Criteria

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

MRL

20

20

20

50

50

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

Guideline = O.Reg 153-T1-Groundwater

Batch No

442864

442894

443014

443014

443014

Hydrocarbons

Analyte

PHC's F1

PHC's F1-BTEX

PHC's F2

PHC's F3

PHC's F4

Lab Sam Sam Sam Sam Units G	1689790 GW153 2023-05-30 MW37	
ug/L	STD 420	<20
ug/L		<20
ug/L	STD 150	<20
ug/L	STD 500	<50
ug/L	STD 500	<50

Lab I.D.

Sample Matrix

Sample Type

Γ

٦

1689790

GW153

Vola	atiles

			San San	aple Type aple Date apling Time aple I.D.	2023-05-30 MW37
Analyte E	Batch No	MRL	Units (Guideline	
Acetone	442864	5	ug/L	STD 2700	<5
Benzene	442864	0.5	ug/L	STD 0.5	<0.5
Bromodichloromethane	442864	0.3	ug/L	STD 2	<0.3
Bromoform	442864	0.4	ug/L	STD 5	<0.4
Bromomethane	442864	0.5	ug/L	STD 0.89	<0.5
Carbon Tetrachloride	442864	0.2	ug/L	STD 0.2	<0.2
Chlorobenzene	442864	0.5	ug/L	STD 0.5	<0.5
Chloroform	442864	0.5	ug/L	STD 2	<0.5
Dibromochloromethane	442864	0.3	ug/L	STD 2	<0.3
Dichlorobenzene, 1,2-	442864	0.4	ug/L	STD 0.5	<0.4
Dichlorobenzene, 1,3-	442864	0.4	ug/L	STD 0.5	<0.4
Dichlorobenzene, 1,4-	442864	0.4	ug/L	STD 0.5	<0.4
Dichlorodifluoromethane	442864	0.5	ug/L	STD 590	<0.5

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Report Number:	199773
Date Submitted:	2023-06
Date Reported:	2023-06
Project:	230080
COC #:	904777

31 6-01 6-07)5 904777

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

Guideline = O.Reg 153-T1-Groundwater

<u>Volatiles</u> Analyte	Batch No	MRL	Sam Sam Sam Sam	I.D. ple Matrix ple Type ple Date pling Time ple I.D. Guideline	1689790 GW153 2023-05-30 MW37
Dichloroethane, 1,1-	442864	0.4	ug/L	STD 0.5	<0.4
Dichloroethane, 1,2-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloroethylene, 1,1-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloroethylene, 1,2-cis-	442864	0.4	ug/L	STD 1.6	<0.4
Dichloroethylene, 1,2-trans-	442864	0.4	ug/L	STD 1.6	<0.4
Dichloropropane, 1,2-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloropropene,1,3-	442864	0.5	ug/L	STD 0.5	<0.5
Dichloropropene,1,3-cis-	442864	0.5	ug/L		<0.5
Dichloropropene,1,3-trans-	442864	0.5	ug/L		<0.5
Ethylbenzene	442864	0.5	ug/L	STD 0.5	<0.5
Ethylene dibromide	442864	0.2	ug/L	STD 0.2	<0.2
Hexane (n)	442864	5	ug/L	STD 5	<5
Methyl Ethyl Ketone	442864	2	ug/L	STD 400	<2
Methyl Isobutyl Ketone	442864	5	ug/L	STD 640	<5
Methyl tert-Butyl Ether (MTBE)	442864	2	ug/L	STD 15	<2
Methylene Chloride	442864	4.0	ug/L	STD 5	<4.0
Styrene	442864	0.5	ug/L	STD 0.5	<0.5
Tetrachloroethane, 1,1,1,2-	442864	0.5	ug/L	STD 1.1	<0.5
Tetrachloroethane, 1,1,2,2-	442864	0.5	ug/L	STD 0.5	<0.5
Tetrachloroethylene	442864	0.3	ug/L	STD 0.5	<0.3
Toluene	442864	0.4	ug/L	STD 0.8	<0.4
Trichloroethane, 1,1,1-	442864	0.4	ug/L	STD 0.5	<0.4
Trichloroethane, 1,1,2-	442864	0.4	ug/L	STD 0.5	<0.4

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Report Number:	19977
Date Submitted:	2023-0
Date Reported:	2023-0
Project:	23008
COC #:	90477

731 06-01 06-07 305 77

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

Report Number: Date Submitted: Date Reported: Project: COC #:

1997731 2023-06-01 2023-06-07 2300805 904777

Guideline = O.Reg 153-T1-Groundwater

<u>Volatiles</u> Analyte B	atch No	MRL	Sam Sam Sam Sam	I.D. ple Matrix ple Type ple Date pling Time ole I.D. Guideline	1689790 GW153 2023-05-30 MW37
Trichloroethylene	442864	0.3	ug/L	STD 0.5	<0.3
Trichlorofluoromethane	442864	0.5	ug/L	STD 150	<0.5
Vinyl Chloride	442864	0.2	ug/L	STD 0.5	<0.2
Xylene Mixture	442872	0.5	ug/L	STD 72	<0.5
Xylene, m/p-	442864	0.4	ug/L		<0.4
Xylene, o-	442864	0.4	ug/L		<0.4
PHC Surrogate Analyte B	atch No	MRL	Sam Sam Sam Sam	I.D. ple Matrix ple Type ple Date pling Time ple I.D. Guideline	1689790 GW153 2023-05-30 MW37
Alpha-androstrane	443014	0	%		107

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

. . .

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

Guideline = O.Reg 153-T1-Groundwater

Report Number: 1997731 2023-06-01 2023-06-07 2300805 COC #: 904777

Date Submitted: Date Reported: Project:

VOCs Surrogates			Sam Sam	ple Matrix ple Type ple Date	1689790 GW153 2023-05-30
Analyte	Batch No	MRL	Sam	pling Time ple I.D. Buideline	MW37
1,2-dichloroethane-d4	442864	0	%		108
4-bromofluorobenzene	442864	0	%		77
Toluene-d8	442864	0	%		92

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997

 Date Submitted:
 2023

 Date Reported:
 2023

 Project:
 2300

 COC #:
 9047

1997731 2023-06-01 2023-06-07 2300805 904777

Quality	Assurance	Summary
---------	-----------	---------

Batch No	Analyte	Blank	QC % Rec	QC Limits	Spike % Rec	Spike Limits	Dup % RPD	Duplicate Limits
442864	Tetrachloroethane, 1,1,1,2-	<0.5 ug/L	88	60-130	109	50-140	0	0-30
442864	Trichloroethane, 1,1,1-	<0.4 ug/L	81	60-130	113	50-140	0	0-30
442864	Tetrachloroethane, 1,1,2,2-	<0.5 ug/L	109	60-130	110	50-140	0	0-30
442864	Trichloroethane, 1,1,2-	<0.4 ug/L	87	60-130	107	50-140	0	0-30
442864	Dichloroethane, 1,1-	<0.4 ug/L	102	60-130	119	50-140	0	0-30
442864	Dichloroethylene, 1,1-	<0.5 ug/L	91	60-130	112	50-140	0	0-30
442864	Dichlorobenzene, 1,2-	<0.4 ug/L	104	60-130	102	50-140	0	0-30
442864	Dichloroethane, 1,2-	<0.5 ug/L	82	60-130	124	50-140	0	0-30
442864	Dichloropropane, 1,2-	<0.5 ug/L	82	60-130	120	50-140	0	0-30
442864	Dichlorobenzene, 1,3-	<0.4 ug/L	100	60-130	101	50-140	0	0-30
442864	Dichloropropene,1,3-							
442864	Dichlorobenzene, 1,4-	<0.4 ug/L	100	60-130	101	50-140	0	0-30
442864	Acetone	<5 ug/L	80	60-130	71	50-140	0	0-30
442864	Benzene	<0.5 ug/L	84	60-130	120	50-140	0	0-30
442864	Bromodichloromethane	<0.3 ug/L	102	60-130	121	50-140	0	0-30
442864	Bromoform	<0.4 ug/L	84	60-130	101	50-140	0	0-30
442864	Bromomethane	<0.5 ug/L	101	60-130	112	50-140	0	0-30
442864	Dichloroethylene, 1,2-cis-	<0.4 ug/L	110	60-130	119	50-140	0	0-30
442864	Dichloropropene,1,3-cis-	<0.5 ug/L	102	60-130	112	50-140	0	0-30
442864	Carbon Tetrachloride	<0.2 ug/L	83	60-130	113	50-140	0	0-30
442864	Chloroform	<0.5 ug/L	103	60-130	119	50-140	0	0-30
442864	Dibromochloromethane	<0.3 ug/L	83	60-130	103	50-140	0	0-30
442864	Dichlorodifluoromethane	<0.5 ug/L	92	60-130	101	50-140	0	0-30
442864	Methylene Chloride	<4.0 ug/L	107	60-130	103	50-140	0	0-30
442864	Ethylbenzene	<0.5 ug/L	80	60-130	112	50-140	0	0-30
442864	Ethylene dibromide	<0.2 ug/L	89	60-130	100	50-140	0	0-30
442864	PHC's F1	<20 ug/L	92	60-140	87	60-140	0	0-30
442864	Hexane (n)	<5 ug/L	100	60-130	107	50-140	0	0-30
442864	Xylene, m/p-	<0.4 ug/L	102	60-130	112	50-140	0	0-30
442864	Methyl Ethyl Ketone	<2 ug/L	120	60-130	121	50-140	0	0-30
442864	Methyl Isobutyl Ketone	<5 ug/L	110	60-130	107	50-140	0	0-30
442864	Methyl tert-Butyl Ether (MTBE)	<2 ug/L	100	60-130	114	50-140	0	0-30

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

Report Number: Date Submitted: Date Reported: Project: COC #:

1997731 2023-06-01 2023-06-07 2300805 904777

Batch No	Analyte	Blank	QC % Rec	QC Limits	Spike % Rec	Spike Limits	Dup % RPD	Duplicate Limits
442864	Chlorobenzene	<0.5 ug/L	83	60-130	109	50-140	0	0-30
442864	Xylene, o-	<0.4 ug/L	102	60-130	113	50-140	0	0-30
442864	Styrene	<0.5 ug/L	99	60-130	111	50-140	0	0-30
442864	Dichloroethylene, 1,2-trans-	<0.4 ug/L	103	60-130	118	50-140	0	0-30
442864	Dichloropropene,1,3-trans-	<0.5 ug/L	96	60-130	111	50-140	0	0-30
442864	Tetrachloroethylene	<0.3 ug/L	110	60-130	112	50-140	0	0-30
442864	Toluene	<0.4 ug/L	108	60-130	125	50-140	0	0-30
442864	Trichloroethylene	<0.3 ug/L	99	60-130	112	50-140	0	0-30
442864	Trichlorofluoromethane	<0.5 ug/L	110	60-130	105	50-140	0	0-30
442864	Vinyl Chloride	<0.2 ug/L	99	60-130	111	50-140	0	0-30
442872	Xylene Mixture							
442894	PHC's F1-BTEX							
443014	PHC's F2	<20 ug/L	80	60-140		60-140		0-30
443014	PHC's F3	<50 ug/L	80	60-140		60-140		0-30
443014	PHC's F4	<50 ug/L	80	60-140		60-140		0-30

Quality Assurance Summary

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997

 Date Submitted:
 2023

 Date Reported:
 2023

 Project:
 2300

 COC #:
 9047

1997731 2023-06-01 2023-06-07 2300805 904777

Test Summary

Batch No	Analyte	Instrument	Prep aration Date	Analysis Date	Analyst	Method
442864	Tetrachloroethane, 1,1,1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichloroethane, 1,1,1-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Tetrachloroethane, 1,1,2,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichloroethane, 1,1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethane, 1,1-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethylene, 1,1-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichlorobenzene, 1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethane, 1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropane, 1,2-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichlorobenzene, 1,3-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropene,1,3-	GC-MS	2023-06-02	2023-06-02	PJ	EPA 8260
442864	Dichlorobenzene, 1,4-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Acetone	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Benzene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Bromodichloromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Bromoform	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Bromomethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethylene, 1,2-cis-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropene,1,3-cis-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Carbon Tetrachloride	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Chloroform	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dibromochloromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichlorodifluoromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methylene Chloride	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Ethylbenzene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Ethylene dibromide	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	PHC's F1	GC/FID	2023-06-02	2023-06-02	PJ	CCME O.Reg 153/04
442864	Hexane (n)	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Xylene, m/p-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methyl Ethyl Ketone	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methyl Isobutyl Ketone	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Methyl tert-Butyl Ether (MTBE)	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

Report Number: Date Submitted: Date Reported: Project: COC #:

1997731 2023-06-01 2023-06-07 2300805 904777

Test Summary

Batch No	Analyte	Instrument	Prep aration Date	Analysis Date	Analyst	Method
442864	Chlorobenzene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Xylene, o-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Styrene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloroethylene, 1,2-trans-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Dichloropropene,1,3-trans-	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Tetrachloroethylene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Toluene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichloroethylene	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Trichlorofluoromethane	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442864	Vinyl Chloride	GC-MS	2023-06-02	2023-06-03	PJ	EPA 8260
442872	Xylene Mixture	GC-MS	2023-06-05	2023-06-05	PJ	EPA 8260
442894	PHC's F1-BTEX	GC/FID	2023-06-05	2023-06-05	PJ	CCME O.Reg 153/04
443014	PHC's F2	GC/FID	2023-06-07	2023-06-07	SS	CCME O.Reg 153/04
443014	PHC's F3	GC/FID	2023-06-07	2023-06-07	SS	CCME O.Reg 153/04
443014	PHC's F4	GC/FID	2023-06-07	2023-06-07	SS	CCME O.Reg 153/04

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

 Report Number:
 1997731

 Date Submitted:
 2023-06-01

 Date Reported:
 2023-06-07

 Project:
 2300805

 COC #:
 904777

CWS for Petroleum Hydrocarbons in Soil - Tier 1

Notes:

- 1. The laboratory method complies with CCME Tier 1 reference method for PHC in soil. It is validated for laboratory use.
- 2. Where the F1 fraction (C6 to C10) and BTEX are both measured, F1-BTEX is reported.
- 3. Where the F2 fraction (C10 to C16) and naphthalene are both measured, F2-naphthalene is reported.
- 4. Where the F3 fraction (C16 to C34) and PAHs* are both measured, F3-PAH is reported.
- 5. F4G is analyzed if the chromatogram does not descend to baseline before C50. Where F4 (C34 to C50) and F4G are both reported, the higher result is compared to the standard.
- 6. Unless otherwise stated in the sample comments, the following criteria have been met where applicable:
 - nC6 and nC10 response factors within 30% of response factor for toluene;
 - nC10, nC16, and nC34 response factors within 10% of each other;
 - C50 response factors within 70% of nC10 + nC16 + nC34 average; and,
 - Linearity is within 15%.
- 7. Unless otherwise stated in the sample comments, sampling requirements and analytical holding times have been met.
- 8. Gravimetric heavy hydrocarbons (F4G) cannot be added to the C6 and C50 hydrocarbons.
- 9. *PAHs = phenanthrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene and pyrene.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.		Report Number:	1997704
	647 Welham Rd Unit 14		Date Submitted:	2023-06-01
	Barrie, ON		Date Reported:	2023-06-08
	L4N 0B7		Project:	2300805
Attention:	Ms. Sarah Griffith		COC #:	904776
PO#:				
Invoice to:	GEI Consultants Inc.	Page 1 of 4		

Dear Sarah Griffith:

🛟 eurofins

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Raheleh Zafari, Environmental Chemist


All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: https://directory.cala.ca/.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention: PO#:	Ms. Sarah Griffith
Invoice to:	GEI Consultants Inc.

🛟 eurofins


Report Number:	1997704
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904776

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1689695 SURF W 2023-05-30 MW23	1689696 SURF W 2023-05-30 MW23 Filtered
General Chemistry	Total Suspended Solids	2	mg/L		10	<2
Metals	Ag	0.0001	mg/L	PWQO 0.0001	<0.0001	< 0.0001
	Al	0.001	mg/L	1 WQC 0.0001	0.07	<0.01
	As	0.001	mg/L	PWQO 0.100	0.003	0.003
	B	0.01	mg/L	IPWQO 0.200	0.23*	0.25*
	Ba	0.01	mg/L		0.06	0.06
	Be	0.0005	mg/L	PWQO 0.011	<0.0005	< 0.0005
	Cd	0.0001	mg/L	PWQO 0.0002	<0.0001	<0.0001
	Со	0.0002	mg/L	PWQO 0.0009	0.0005	0.0005
	Cr	0.001	mg/L		<0.001	<0.001
	Cu	0.001	mg/L	PWQO 0.005	<0.001	<0.001
	Fe	0.03	mg/L	PWQO 0.30	0.11	<0.03
	Hg	0.0001	mg/L	PWQO 0.0002	<0.0001	<0.0001
	Мо	0.005	mg/L	IPWQO 0.040	0.005	0.006
	Ni	0.005	mg/L	PWQO 0.025	<0.005	<0.005
	Pb	0.001	mg/L	PWQO 0.005	<0.001	<0.001
	Sb	0.0005	mg/L	IPWQO 0.020	<0.0005	<0.0005
	Se	0.001	mg/L	PWQO 0.100	<0.001	<0.001
	TI	0.0001	mg/L	IPWQO 0.0003	<0.0001	<0.0001
	U	0.001	mg/L	IPWQO 0.005	0.003	0.003
	V	0.001	mg/L	IPWQO 0.006	<0.001	<0.001
	W	0.002	mg/L	IPWQO 0.030	<0.002	<0.002
	Zn	0.01	mg/L	PWQO 0.030	<0.01	<0.01
	Zr	0.002	mg/L	IPWQO 0.004	<0.002	<0.002

Guideline = PWQO - Ontario

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997704
Date Submitted:	2023-06-01
Date Reported:	2023-06-08
Project:	2300805
COC #:	904776

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 442857 Analysis/Extraction Date 2 Method EPA 200.8	023-06-05 Ana	ilyst SD	
Silver	<0.0001 mg/L	82	80-120
Aluminum	<0.01 mg/L	116	80-120
Arsenic	<0.001 mg/L	93	80-120
Boron (total)	<0.01 mg/L	108	80-120
Barium	<0.01 mg/L	90	80-120
Beryllium	<0.0005 mg/L	110	80-120
Cadmium	<0.0001 mg/L	103	80-120
Cobalt	<0.0002 mg/L	99	80-120
Chromium Total	<0.001 mg/L	100	80-120
Copper	<0.001 mg/L	101	80-120
Iron	<0.03 mg/L	98	80-120
Mercury	<0.0001 mg/L	105	80-120
Molybdenum	<0.005 mg/L	95	80-120
Nickel	<0.005 mg/L	101	80-120
Lead	<0.001 mg/L	100	80-120
Antimony	<0.0005 mg/L	115	80-120

Guideline = PWQO - Ontario

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

1997704
2023-06-01
2023-06-08
2300805
904776

QC Summary

Analyte	Blank	QC % Rec	QC Limits	
Selenium	<0.001 mg/L	100	80-120	
Thallium	<0.0001 mg/L	97	80-120	
Uranium	<0.001 mg/L	94	80-120	
Vanadium	<0.001 mg/L	98	80-120	
W	<0.002 mg/L	89	80-120	
Zinc	<0.01 mg/L	106	80-120	
Zr	<0.002 mg/L	89	80-120	
Run No 442896 Analysis/Extraction Date 2023-06-06 Analyst R T Method C SM2540 C SM2				
Total Suspended Solids	<2 mg/L	98	90-110	
Run No 443074 Analysis/Extraction Date 20 Method EPA 200.8	023-06-08 Ana	ilyst SD		
Mercury	<0.0001 mg/L	104	80-120	

Guideline = PWQO - Ontario

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GEI Consultants Inc.		Report Number:	1997705
	647 Welham Rd Unit 14		Date Submitted:	2023-06-01
	Barrie, ON		Date Reported:	2023-06-07
	L4N 0B7		Project:	2300805
Attention:	Ms. Sarah Griffith		COC #:	904777
PO#:				
Invoice to:	GEI Consultants Inc.	Page 1 of 4		

Dear Sarah Griffith:

🛟 eurofins

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Raheleh Zafari, Environmental Chemist


All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: https://directory.cala.ca/.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

Report Number:	1997705
Date Submitted:	2023-06-01
Date Reported:	2023-06-07
Project:	2300805
COC #:	904777


Graun	Angluta	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1689697 SURF W 2023-05-30 MW37	1689699 SURF W 2023-05-30 MW37 Filtered
Group	Analyte	2		Guideinie	89	<2
General Chemistry	Total Suspended Solids	_	mg/L	DW/00 0 0001	<0.0001	<0.0001
Metals	Ag	0.0001	mg/L	PWQO 0.0001		<0.001
	Al	0.01	mg/L	DW(00.0.400	0.23	
	As	0.001	mg/L	PWQO 0.100	0.002	0.002
	В	0.01	mg/L	IPWQO 0.200	0.73*	0.75*
	Ba	0.01	mg/L		0.03	0.03
	Be	0.0005	mg/L	PWQO 0.011	<0.0005	< 0.0005
	Cd	0.0001	mg/L	PWQO 0.0002	<0.0001	< 0.0001
	Со	0.0002	mg/L	PWQO 0.0009	0.0006	0.0003
	Cr	0.001	mg/L		<0.001	<0.001
	Cu	0.001	mg/L	PWQO 0.005	0.001	<0.001
	Fe	0.03	mg/L	PWQO 0.30	0.51*	<0.03
	Hg	0.0001	mg/L	PWQO 0.0002	<0.0001	<0.0001
	Мо	0.005	mg/L	IPWQO 0.040	0.006	0.008
	Ni	0.005	mg/L	PWQO 0.025	<0.005	<0.005
	Pb	0.001	mg/L	PWQO 0.005	<0.001	<0.001
	Sb	0.0005	mg/L	IPWQO 0.020	<0.0005	<0.0005
	Se	0.001	mg/L	PWQO 0.100	<0.001	<0.001
	TI	0.0001	mg/L	IPWQO 0.0003	<0.0001	<0.0001
	U	0.001	mg/L	IPWQO 0.005	0.002	0.002
	V	0.001	mg/L	IPWQO 0.006	<0.001	<0.001
	W	0.002	mg/L	IPWQO 0.030	<0.002	<0.002
	Zn	0.01	mg/L	PWQO 0.030	<0.01	<0.01
	Zr	0.002	mg/L	IPWQO 0.004	<0.002	<0.002

Guideline = PWQO - Ontario

🛟 eurofins

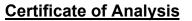
* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997705
Date Submitted:	2023-06-01
Date Reported:	2023-06-07
Project:	2300805
COC #:	904777


QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 442857 Analysis/Extraction Date 2 Method EPA 200.8	023-06-05 Ana	ilyst SD	
Silver	<0.0001 mg/L	82	80-120
Aluminum	<0.01 mg/L	116	80-120
Arsenic	<0.001 mg/L	93	80-120
Boron (total)	<0.01 mg/L	108	80-120
Barium	<0.01 mg/L	90	80-120
Beryllium	<0.0005 mg/L	110	80-120
Cadmium	<0.0001 mg/L	103	80-120
Cobalt	<0.0002 mg/L	99	80-120
Chromium Total	<0.001 mg/L	100	80-120
Copper	<0.001 mg/L	101	80-120
Iron	<0.03 mg/L	98	80-120
Mercury	<0.0001 mg/L	105	80-120
Molybdenum	<0.005 mg/L	95	80-120
Nickel	<0.005 mg/L	101	80-120
Lead	<0.001 mg/L	100	80-120
Antimony	<0.0005 mg/L	115	80-120

Guideline = PWQO - Ontario

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Client:	GEI Consultants Inc.
	647 Welham Rd Unit 14
	Barrie, ON
	L4N 0B7
Attention:	Ms. Sarah Griffith
PO#:	
Invoice to:	GEI Consultants Inc.

🛟 eurofins

Report Number:	1997705
Date Submitted:	2023-06-01
Date Reported:	2023-06-07
Project:	2300805
COC #:	904777

QC Summary

Analyte	Blank	QC % Rec	QC Limits	
Selenium	<0.001 mg/L	100	80-120	
Thallium	<0.0001 mg/L	97	80-120	
Uranium	<0.001 mg/L	94	80-120	
Vanadium	<0.001 mg/L	98	80-120	
W	<0.002 mg/L	89	80-120	
Zinc	<0.01 mg/L	106	80-120	
Zr	<0.002 mg/L	89	80-120	
Run No 442896 Analysis/Extraction Date 2023-06-06 Analyst R T Method C SM2540				
Total Suspended Solids	<2 mg/L	98	90-110	

Guideline = PWQO - Ontario

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Appendix F

Construction Dewatering Calculations

Proposed Commercial Warehouse Development - 6728 Sixth Line, Milton, ON

Temporary Construction Dewatering Rates - General Site Servicing

Description	Symbol	Values	Unit	Explanation			
Input Data: Excavation							
Lowest Ground Elevation		183.6	m asl	Lowest ground elevation on site at Borehole 53			
Lowest Proposed Excavation		179.6	m asl	Assummed excavation extending 4 m below Lowest Ground Elevation			
Length of Excavation	х	100	m	Assumed Trenching Sections			
Width of Excavation	а	4	m	Assumed			
		Input Data	: Aquifer				
Highest Groundwater Level		-0.4	m	Highest groundwater level measured on site from Monitoring Well 43 on May 23, 2023			
Target Water Level		179.1	m asl	0.5 m below Lowest Propsed Excavation			
Aquifer Bottom		178.1	m asl	Assumed 1.0 m below Target Water Level			
Hydraulic Conductivity	К	7.3E-06	m/s	Maxmium hydraulic conductivitu measured on site (Monitoring Well 2)			
		Outp	out				
Top of Aquifer		184.0	m asl	Assummed via lowest Proposed Excavation and Highest Groundwater Level			
Water Level above Aquifer Bottom before dewatering	Н	5.9	m	Assummed via lowest Proposed Excavation and Highest Groundwater Level			
Target Water Level above Aquifer Bottom after dewatering	h	1.0	m	Assumed 1.0 m below Target Water Level			
Radius of Influence	R ₀	40	m	Sichardt Equation			
Precipitation	р	4000	L/day	10 mm rain event			
Construction Dewatering Flow Rate - Steady State	Q	112	m³/day	Construction Dewatering Rate - Dupuit Equation			
Maximum Construction Flow Rate (safety factor of 2)	2Q	223	m³/day				

Construction Dewatering Flow Rate - Steady State	Q	111,700	L/day
Maximum Construction Flow Rate (safety factor of 2)	2Q	223,400	L/day
Maximum Construction Flow Rate (safety factor of 2) with 10 mm rainfall event	2Q + p	227,400	L/day

Proposed Commercial Warehouse Development - 6728 Sixth Line, Milton, ON

Temporary Construction Dewatering Rates - General Creek Realignment

Description	Symbol	Values	Unit	Explanation				
Input Data: Excavation								
Lowest Ground Elevation		183.6	m asl	Lowest ground elevation on site at Borehole 53				
Lowest Proposed Excavation		182.6	m asl	Assumed 1 m Bankful Depth via the Topographic Sketeches by Vujeva Surveys Ltd (2018)				
Length of Excavation	х	100	m	Assumed Trenching Sections				
Width of Excavation	а	5	m	Assumed 5 m Bankful Depth via the Topographic Sketeches by Vujeva Surveys Ltd (2018)				
		Input Dat	a: Aquifer					
Highest Groundwater Level		-0.4	m	Highest groundwater level measured on site from Monitoring Well 43 on May 23, 2023				
Target Water Level		182.1	m asl	0.5 m below Lowest Propsed Excavation				
Aquifer Bottom		181.1	m asl	Assumed 1.0 m below Target Water Level				
Hydraulic Conductivity	К	7.3E-06	m/s	Maxmium hydraulic conductivity measured on site (Monitoring Well 2)				
		Ou	tput					
Top of Aquifer		184.0	m asl	Assummed via lowest Proposed Excavation and Highest Groundwater Level				
Water Level above Aquifer Bottom before dewatering	Н	2.9	m	Assummed via lowest Proposed Excavation and Highest Groundwater Level				
Target Water Level above Aquifer Bottom after dewatering	h	1.0	m	Assumed 1.0 m below Target Water Level				
Radius of Influence	R ₀	15	m	Sichardt Equation				
Precipitation	р	5000	L/day	10 mm rain event				
Construction Dewatering Flow Rate - Steady State	Q	64	m³/day	Construction Dewatering Rate - Dupuit Equation				
Maximum Construction Flow Rate (safety factor of 2)	2Q	127	m ³ /day					

Construction Dewatering Flow Rate - Steady State	Q	63,700	L/day
Maximum Construction Flow Rate (safety factor of 2)	2Q	127,400	L/day
Maximum Construction Flow Rate (safety factor of 2) with 10 mm rainfall event	2Q + p	132,400	L/day

Proposed Commercial Warehouse Development - 6728 Sixth Line, Milton, ON

Temporary Construction Dewatering Rates - Stormwater Management Pond (Building 2)

Description	Symbol	Values	Unit	Explanation				
Input Data: Excavation								
Lowest Ground Elevation		187.3	m asl	Lowest ground elevation in the vicinity at Borehole 34				
Lowest Proposed Excavation		181.3	m asl	Assumed 6 m below Lowest Ground Elevation				
Length of Excavation	Х	300	m	SWM Pond Length via the Conceptual Site Plan by Ware Malcomb (2023)				
Width of Excavation	а	80	m	SWM Pond Width via the Conceptual Site Plan by Ware Malcomb (2023)				
		Input I	Data: Aquifer					
Highest Groundwater Level		-0.4	m	Highest groundwater level measured on site from Monitoring Well 43 on May 23, 2023				
Target Water Level		180.8	m asl	0.5 m below Lowest Propsed Excavation				
Aquifer Bottom		179.8	m asl	Assumed 1.0 m below Target Water Level				
Hydraulic Conductivity	К	7.3E-06	m/s	Maxmium hydraulic conductivity measured on site (Monitoring Well 2)				
		(Dutput					
Top of Aquifer		187.7	m asl	Assummed via lowest Proposed Excavation and Highest Groundwater Level				
Water Level above Aquifer Bottom before dewatering	Н	7.9	m	Assummed via lowest Proposed Excavation and Highest Groundwater Level				
Target Water Level above Aquifer Bottom after dewatering	h	1.0	m	Assumed 1.0 m below Target Water Level				
Radius of Influence	R ₀	56	m	Sichardt Equation				
Precipitation	р	240000	L/day	10 mm rain event				
Construction Dewatering Flow Rate - Steady State	Q	526	m³/day	Construction Dewatering Rate - Dupuit Equation				
Maximum Construction Flow Rate (safety factor of 2)	2Q	1053	m³/day					

Construction Dewatering Flow Rate - Steady State	Q	526,300	L/day
Maximum Construction Flow Rate (safety factor of 2)	2Q	1,052,600	L/day
Maximum Construction Flow Rate (safety factor of 2) with 10 mm rainfall event	2Q + p	1,292,600	L/day

Proposed Commercial Warehouse Development - 6728 Sixth Line, Milton, ON

Temporary Construction Dewatering Rates - Stormwater Management Pond (Building 3)

Description	Symbol	Values	Unit	Explanation
	I	Input Da	ta: Excavation	
Lowest Ground Elevation		183.6	m asl	Lowest ground elevation in the vicinity at Borehole 53
Lowest Proposed Excavation		177.6	m asl	Assumed 6 m below Lowest Ground Elevation
Length of Excavation	х	110	m	SWM Pond Length via the Conceptual Site Plan by Ware Malcomb (2023)
Width of Excavation	а	90	m	SWM Pond Width via the Conceptual Site Plan by Ware Malcomb (2023)
		Input D	ata: Aquifer	
Highest Groundwater Level		0.9	m	Highest groundwater level measured in the vicinity from Monitoring Well 28 on May 23, 2023
Target Water Level		177.1	m asl	0.5 m below Lowest Propsed Excavation
Aquifer Bottom		176.1	m asl	Assumed 1.0 m below Target Water Level
Hydraulic Conductivity	К	7.3E-06	m/s	Maxmium hydraulic conductivity measured on site (Monitoring Well 2)
		C	Dutput	
Top of Aquifer		182.7	m asl	Assummed via lowest Proposed Excavation and Highest Groundwater Level
Water Level above Aquifer Bottom before dewatering	Н	6.6	m	Assummed via lowest Proposed Excavation and Highest Groundwater Level
Target Water Level above Aquifer Bottom after dewatering	h	1.0	m	Assumed 1.0 m below Target Water Level
Radius of Influence	R ₀	45	m	Sichardt Equation
Precipitation	р	99000	L/day	10 mm rain event
Construction Dewatering Flow Rate - Steady State	Q	237	m³/day	Construction Dewatering Rate - Dupuit Equation
Maximum Construction Flow Rate (safety factor of 2)	2Q	473	m³/day	

Construction Dewatering Flow Rate - Steady State	Q	236,600	L/day
Maximum Construction Flow Rate (safety factor of 2)	2Q	473,200	L/day
Maximum Construction Flow Rate (safety factor of 2) with 10 mm rainfall event	2Q + p	572,200	L/day

Appendix G

Groundwater Taking Plan

This plan, as required under O.Reg.63/16, provides a general outline of the dewatering plan for the site to satisfy the PTTW requirements and that a detailed plan will be generated as needed by the contractor and their dewatering subcontractor that will include detailed treatment and monitoring measures.

Based on the conditions at and around the site, the target receiver for any dewatering discharge will be the Sixteen Mile Creek subwatershed. It is understood that any discharge will be released at a minimum distance of 30 m from any watercourse(s) and that appropriate measures will be put in place to minimize the potential for discharge to generate erosion and contribute sediment into the nearby unnamed tributaries of Sixteen Mile Creek and will encourage discharge to recharge back into the subsurface prior to reaching the tributaries.

As parts of the surrounding area appear to be serviced by sanitary and storm sewers, either of these options may be possible as a backup receiver for dewatering discharge if for some reason, the watershed is not a viable option. Should discharge be planned for either of the sewer systems, the contractor and/or its dewatering subcontractor will need to ensure that all permissions and/or permits are obtained to allow for discharge to that sewer and that all dewatering discharge meets the appropriate chemistry and discharge flow requirements imposed for that system.

Ultimately, the method(s) employed to complete the dewatering will be left up to the contractor and/or its dewatering contractor to determine what will work best for them to achieve the dry working conditions that they require.

Construction Dewatering Discharge Rates and Zones of Influence

Dewatering Zone	Description	ROI (m)
1: General Site Servicing per 100 m	Sanitary, storm, and water servicing for Buildings 1 to 3 Removal of existing channel below grade between Buildings 2 and 3	40
2: General Creek Realignment per 100 m	Future watercourse channel proposed between Buildings 2 and 3 and along south of Buildings 1 and 2	15
3: General Stormwater Management Pond	South of Building 2	56

The Radii of Influence were estimated in Section 5.1 and the details are summarized below.

4: General		
Stormwater	South of Building 3	45
Management Pond	-	

The estimated water taking rates are below.

Location and Scenario	Construction Dewatering Flow Rate without a Safety Factor	Construction Dewatering Flow Rate Including Safety Factor of 2.0	Construction Dewatering Flow Rate Including Safety Factor of 2.0 with a 10 mm Rainfall Event
			L/day
1: General Site Servicing per 100 m	111,700	223,400	227,400
2: General Creek Realignment per 100 m	63,700	127,400	132,400
3: General Stormwater Management Pond (Building 2)	526,300	1,052,600	1,292,600
4: General Stormwater Management Pond (Building 3)	236,600	473,200	572,200

Impact Assessment

Land Stability and Settlement

For the assumed maximum groundwater drawdown of 4.9 to 6.9 m for construction dewatering, settlement of the soil within the zone of influence must be calculated based on the increase in effective stress (10 kPa per m of drawdown) from reducing the pore water pressures. The maximum settlement will occur adjacent to the dewatering system where the maximum drawdown occurs. Settlement has the potential to damage buried utilities, building foundations, or cause subsidence in adjacent lands. The amount of settlement will decrease exponentially to zero towards the radius of influence limit.

The estimated maximum drawdown is 4.9 to 6.9 m and will occur within the firm to hard cohesive soils, the loose to compact cohesionless soils, and the very dense / firm to hard glacial tills. The ROIs were calculated to be 15 to 56 m. The estimated total settlement of the soil is assessed to be as much as 10 mm at the dewatering location. Due to the cohesive nature of some of the soils, settlement may not occur immediately. A review of aerial mapping shows that buildings are typically 45 m or more from the site boundaries. Due to the exponential decrease in drawdown

with distance, the estimated settlement for the buildings neighbouring the site is 5 mm or less.

Based on the above, settlement related impacts to nearby buildings are not expected.

As only temporary dewatering is expected during site development including servicing, removing the existing channel below grade between Buildings 2 and 3, realigning the creek into the future channel, and developing two above ground stormwater management ponds, no impacts are expected as related to dewatering settlement.

Another cause of significant dewatering related settlement is due to pumping of fines through the system. It is imperative that any dewatering systems (e.g., sump pumps) shall be installed adequately to ensure no soil is conveyed through the system. Sufficient filtering techniques are incorporated at the entry point to avoid migration fines in the pumping/dewatering system. The turbidity of pumped water should be monitored daily to ensure that only minimal fines are being conveyed through the system.

Potential Impact on Nearby Groundwater Users

One (1) record of a domestic water supply well was found on-site (Well ID: 2808031) installed in 1991 for the use of the golf course club house. Twenty-two (22) domestic water supply well records were identified within 500 m of the site, installed from 1953 to 2008. Two (2) public water supply well records were identified within 500 m of the site for a test hole installed in 1986 for future irrigation / public supply use (Well ID: 2806503) and a water supply well installed in 2006 for the Radha Soami Society Beas Canada (Well ID: 2810623). Of these twenty-five (25) domestic and public wells:

- Only one (1) well record (Well ID: 2808624) indicated the installed depth of screen, at 16 to 18 m below grade within the overburden.
- Fourteen (14) well records indicated that fresh water was encountered 2 to 60 m below grade within the overburden.
- Eight (8) well records indicated that fresh water was encountered 7 to 20 m below grade within shale bedrock.
- Two (2) well records (Well IDs: 2808031 and 2808394) indicated that salty water was encountered 25 to 27 m below grade within shale bedrock.
- One (1) well record indicated that water of unknown quality was encountered at 2 m below grade within the overburden.

It is unknown if domestic or public water supply wells within 500 m of the site have been abandoned or are no longer in use for domestic supply since some of the surrounding area is developed and serviced by the Town of Milton. However, one (1) domestic well installed in 1959 (Well ID: 2802600) may be within estimated radius of influence for drawdown and may be impacted by the temporary dewatering that is occurring near the ground surface.

As the total estimated drawdown during dewatering will be 4.9 to 6.9 m below current grade, a door-to-door well survey should be undertaken to determine if any the domestic or public water wells within the estimated radius of influence for drawdown are still in use.

Potential Impact on Nearby Waterbodies or Other Surface Water Features

Minimal impacts to groundwater levels or flow directions, deeper aquifers, or other impacts to environmental features are expected due to the construction dewatering being a temporary (short-term) condition.

Given that site is adjacent to unevaluated wetlands, contains tributaries of the Sixteen Mile Creek and is adjacent to the Sixteen Mile Creek, it is possible the proposed construction dewatering activity will negatively impact the groundwater flow to the unnamed tributaries of Sixteen Mile Creek and Sixteen Mile Creek itself. However, the site is not located in nor within 500 m of an ANSI and the water removed will ultimately be returned back to the Sixteen Mile Creek subwatershed.

Water Quantity, Quality and Groundwater Level Monitoring Program

Discharge Options

Based on the groundwater quality analysis to date, dewatering discharge can be directed to the surface and/or the Halton Region Combined Sewer provided groundwater quality during dewatering activities complies with the applicable PWQO and/or Halton Region Combined Sewer Use By-Law Criteria.

If the groundwater quality of the construction dewatering discharge does not meet the applicable standards treatment options should be evaluated and/or the system should be shut down.

If the dewatering discharge water is treated by filtration (a decantation tank and silt bag at a minimum) to remove sediment and fines, the water quality is expected to improve to likely meet the PWQO and the Halton Region Combined Sewer Use By-Law Criteria. However, the contractor must treat the discharge using their own means and methods to ensure it meets the applicable standard.

Water Quality Monitoring and Potential Treatment Plan

The monitoring plan for discharge to the surface is outlined on Table G-1.

Groundwater Level Monitoring Program

The ground water level monitoring program is outlined on Table G-2.

Discharge Rate Monitoring

The total groundwater volume pumped must be measured and recorded daily by the dewatering contractor. The water taking rates should be measured using an electronic device, and the daily

water volumes must be reported to MECP on the Water Taking and Reporting System (WTRS) or through the Regulatory Self Reporting System. The volume of water taken daily for each dewatered work area shall be reported to the ministry on or before March 31 in each year, for each location from which water was taken in the previous calendar year. If no water is taken, then a "no taking" report must be entered.

The contractor will maintain a record of all water takings. This record will include the dates and duration of water takings, and the total measured volume of water pumped per day for each day that water is taken and will be updated and reported to the Client weekly. Daily precipitation must also be recorded by the contractor. The records must be kept up to date and available at or near the site and provided to the MECP upon request.

Summary of Qualifications

Sarah Griffith, G.I.T.

Ms. Sarah Griffith, G.I.T. is a geoscientist-in-training registered with the Professional Geoscientists of Ontario with more than two years of experience of experience specializing in geoenvironmental and hydrogeological investigations.

She has been trained in to complete local scale ground water assessments, well feasibility studies, water budgets, supervising the installation, development, sampling and decommissioning of monitoring wells, in-situ borehole permeability testing, determination of ground water flow characteristics, surface water sampling, and preparation of hydrogeological reports and compliance monitoring programs in accordance with the applicable MECP requirements.

Kimberly Gilder, P.Geo.

Ms. Kimberly Gilder is a senior hydrogeologist with twenty years of experience specializing in hydrogeological investigations and dewatering assessments and permitting.

Her background includes hydrogeological investigations, construction dewatering assessments, Permit To Take Water and EASR applications and renewals, Class EA investigations, groundwater under influence of surface water investigations, Source Water Protection studies, groundwater supply explorations, large-scale groundwater monitoring programs, and water balances.

Geoffrey White, P.Eng.

Mr. Geoffrey White, P.Eng., is a senior geotechnical engineer with 27 years of interdisciplinary professional experience Mr. White specializes in geotechnical engineering, with experience in geoenvironmental project, hydrogeological projects and support for materials inspection and testing.

His hydrogeological experience includes long-term/short-term groundwater and surface water monitoring, local scale groundwater assessments, water budgets, supervising the installation,

development, sampling and decommissioning of monitoring wells, and determination of groundwater flow characteristics.

Date of Plan Preparation

This plan prepared on the date January 17, 2024

TABLE G-1

WATER QUALITY MONITORING PLAN FOR DEWATERING DISCHARGE TO SURFACE OR SEWERS¹

Period	Monitoring Location	Parameters ²	Monitoring Frequency ³	Trigger For Mitigation	Mitigation Measures / Comments
Trial Dewatering or at the Start of Construction	Dewatering discharge	PWQO Metals and O.Reg. 153/04 PHCs and VOCs Halton Region Combined Sewer Use By-Law Criteria	Once during trial dewatering or on the first day of dewatering (with rushed samples)	Exceeds the PWQO, O.Reg. 153/04, and/or Halton Region Combined Sewer Use By-Law Criteria No Yes – Proceed to Mitigation Measures / Comments	Modify treatment method and/or shut down.
		PWQO Metals and O.Reg. 153/04 PHCs and VOCs Halton Region Combined Sewer Use By-Law Criteria	Weekly then every four weeks after 3 consecutive weekly compliant samples ³	Exceeds the PWQO, O.Reg. 153/04, and/or Halton Region Combined Sewer Use By-Law Criteria No Yes – Proceed to Mitigation Measures / Comments	Modify treatment method and/or shut down.
	Dewatering system discharge location	Turbidity	Daily until stable (minimum 5 samples) then weekly ³	Exceeds 15 NTU No Yes – Proceed to Mitigation Measures / Comments	
During Construction Dewatering		Hydrocarbon sheen in discharge	Daily	Hydrocarbon sheen observed No Yes – Proceed to Mitigation Measures / Comments	Stop dewatering until the source can be determined and remediate prior to continuing to discharge.
		Total groundwater pumping / discharge rate	Daily with electronic device	Flows exceeds 400,000 L/day (e.g., due to heavy rainfall event) No Yes – Proceed to Mitigation Measures / Comments	Temporarily reduce pumping rate or shorten the length of trench being dewatered until rate drops below 1,300,000 L/day.
		Record the daily precipitation at the construction site	Daily	N/A	N/A

TABLE G-1

WATER QUALITY MONITORING PLAN FOR DEWATERING DISCHARGE TO SURFACE OR SEWERS¹

Period	Monitoring Location	Parameters ²	Monitoring Frequency ³	Trigger For Mitigation	Mitigation Measures / Comments
		Signs of erosion, sediment, or flooding	Daily	Sedimentation, erosion, flooding observed. No Yes – Proceed to Mitigation Measures / Comments	Reduce pumping and/or improve sediment/erosion control measures.
	Within the ROI from the Dewatering Location / Excavation / Trench	Settlement / Subsidence of nearby land	Daily	Visual indication of settlement/subsidence No Yes – Proceed to Mitigation Measures / Comments	Reduce pumping and consult both dewatering contractor and geotechnical engineer
		N/A	N/A	Complaint received with respect to water taking and pertains to natural environment. No Yes – Proceed to Mitigation Measures / Comments	Document and evaluate if actually related to dewatering, implement mitigation measures. Submit complaint and mitigation measures to local MECP office

Notes:

All items and observations during dewatering should be recorded in a log on site, accessible for inspection. (1) It is recommended that discharge be treated by a sediment control facility such as a decantation tank and filtration bags at a minimum. Means and methods determined by the contractor.

(2) Parameters may be removed from future testing after three consecutive compliant results and with agreement by QP. If dewatering moves to a different location all initial parameters may need to be retested at the discretion of the QP.

(3) If dewatering moves to a different location or a non-compliant result is detected, the sampling may need to return to the initial frequency at the QP's discretion.

TABLE G-2

SUMMARIZED GROUNDWATER LEVEL MONITORING PLAN

Period	Monitoring Location	Method	Monitoring Frequency	Trigger For Mitigation	Mitigation Measures / Comments
Trial Dewatering or at the Start of Construction	On-Site Monitoring Wells	Water Level Meter	At a minimum, once prior to dewatering	None.	Together with previous measurement(s) establish baseline water levels.
During Construction	On-Site Monitoring Wells	Water Level Meter	Every two weeks	Water level drops more than 2 m below the target dewatering elevation	Reduce pumping
Post-Construction	On-Site Monitoring Wells	Water Level Meter	Every two weeks for four weeks, then every four weeks until 90% recovery	Water level recovery less than 90% of baseline level	Continue monitoring

Appendix H

Discharge Plan

This plan, as required under O.Reg.63/16, provides a general outline of the discharge plan for the site to satisfy the PTTW requirements and a detailed plan will be generated as needed by the contractor and their dewatering subcontractor that will include detailed treatment and monitoring measures.

Based on the conditions at and around the site, the target receiver for any dewatering discharge will be the Sixteen Mile Creek subwatershed. It is understood that any discharge will be released at a minimum distance of 30 m from any watercourse(s) and that appropriate measures will be put in place to minimize the potential for discharge to generate erosion and contribute sediment into the unnamed tributaries of the Sixteen Mile Creek and will encourage discharge to recharge back into the subsurface prior to reaching the tributaries.

As the surrounding area is serviced by sanitary and storm sewers, either of these options may be possible as a backup receiver for dewatering discharge if for some reason, the watershed is not a viable option. Should discharge be planned for the sewer system, the contractor and/or its dewatering subcontractor will need to ensure that all permissions and/or permits are obtained to allow for discharge to that sewer and that all dewatering discharge meets the appropriate chemistry and discharge flow requirements imposed for that system.

Ultimately the treatment and discharge method(s) employed during dewatering will be left up to the contractor and/or its dewatering contractor to determine.

Construction Dewatering Discharge Rate

Location and Scenario	Construction Dewatering Flow Rate without a Safety Factor	Construction Dewatering Flow Rate Including Safety Factor of 2.0	Construction Dewatering Flow Rate Including Safety Factor of 2.0 with a 10 mm Rainfall Event
		L/day	
1: General Site Servicing per 100 m	111,700	223,400	227,400
2: General Creek Realignment per 100 m	63,700	127,400	132,400

The temporary dewatering discharge rates were estimated in Section 5.1 and the details are summarized below.

Location and Scenario	Construction Dewatering Flow Rate without a Safety Factor	Construction Dewatering Flow Rate Including Safety Factor of 2.0	Construction Dewatering Flow Rate Including Safety Factor of 2.0 with a 10 mm Rainfall Event	
		L/day		
3: General				
Stormwater	526,300	1,052,600	1,292,600	
Management Pond	520,500		1,292,000	
(Building 2)				
4: General				
Stormwater	236,600	473,200	572,200	
Management Pond	230,000	473,200	572,200	
(Building 3)				

Proposed Discharge Method and Location

It is understood that the preferred discharge location would be to the surface or the sewer. Dewatering discharge will be directed by hose or pipe from the dewatering system to any pretreatment systems (such as a sediment tank and silt bag), and then by hose or pipe to the preferred discharge location.

In the event of a significant rainfall event (100-year storm event), on-site excavation will cease until the dewatering system can be re-evaluated and/or storm water flow subsides.

Erosion and Sediment Control Measures

The construction dewatering setup will include sediment and erosion control measures, and sufficient filtration to ensure removal of suspended solids prior to discharge in accordance with typical Best Management Practices and to be sufficient to meet relevant receptor requirements.

Statements

If discharge is directed to the surface with adherence to the water quantity and quality monitoring program outlined in the Water Taking Plan in Appendix G, no adverse effect on the environment is expected.

The discharge water temperature was considered in determining the method of transfer and discharge and is not expected to have an adverse impact.

Summary of Qualifications

Sarah Griffith, G.I.T.

Ms. Sarah Griffith is a geoscientist-in-training registered with the Professional Geoscientists of Ontario with over two years of experience of experience specializing in geoenvironmental and hydrogeological investigations.

She has been trained in to complete local scale ground water assessments, well feasibility studies, water budgets, supervising the installation, development, sampling and decommissioning

of monitoring wells, in-situ borehole permeability testing, determination of ground water flow characteristics, surface water sampling, and preparation of hydrogeological reports and compliance monitoring programs in accordance with the applicable MECP requirements.

Kimberly Gilder, P.Geo.

Ms. Kimberly Gilder is a senior hydrogeologist with twenty years of experience specializing in hydrogeological investigations and dewatering assessments and permitting.

Her background includes hydrogeological investigations, construction dewatering assessments, Permit To Take Water and EASR applications and renewals, Class EA investigations, groundwater under influence of surface water investigations, Source Water Protection studies, groundwater supply explorations, large-scale groundwater monitoring programs, and water balances.

Geoffrey White, P.Eng.

Mr. Geoffrey White, P.Eng., is a senior geotechnical engineer with 27 years of interdisciplinary professional experience Mr. White specializes in geotechnical engineering, with experience in geoenvironmental project, hydrogeological projects and support for materials inspection and testing.

His hydrogeological experience includes long-term/short-term groundwater and surface water monitoring, local scale groundwater assessments, water budgets, supervising the installation, development, sampling and decommissioning of monitoring wells, and determination of groundwater flow characteristics.

Date of Plan Preparation

This plan prepared on the date January 17, 2024

Appendix I

Preliminary Water Balance

		MONTHL	Y AND YEARLY	WATER BALAI	NCE COMPON	IENTS (POST-	DEVELOPMENT	CONDITION)							
			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	Average Temperature: T	(°C)	-6.3	-5.2	-0.9	6.0	12.3	17.4	20.0	19.0	14.8	8.4	2.8	-2.9	7.1
Potential	Heat Index: i=(T/5) ^{1.514}		0.00	0.00	0.00	1.32	3.91	6.61	8.16	7.55	5.17	2.19	0.42	0.00	35.3
Evapotranspiration	Unadjusted Daily Potent	tial Evapotranspiration: U (mm)	0.0	0.0	0.0	28.0	60.0	86.6	100.3	95.0	72.9	40.0	12.5	0.0	495.5
Calculation	Adjusting Factor for U (L	atitude 44°)	0.81	0.81	1.02	1.13	1.27	1.28	1.30	1.20	1.04	0.94	0.80	0.76	-
	Adjusted Potential Evap	otranspiration: PET (mm)	0.0	0.0	0.0	31.7	76.2	110.8	130.4	114.0	75.9	37.6	10.0	0.0	586.7
	Precipitation: P (mm)		67.8	60	57.2	76.5	79.3	74.8	73.5	79.3	86.2	68.3	88.5	65.9	877.3
	Adjusted Potential Evap	ed Potential Evapotranspiration: PET (mm)		0.0	0.0	31.7	76.2	110.8	130.4	114.0	75.9	37.6	10.0	0.0	586.7
	P - PET		67.8	60.0	57.2	44.8	3.1	-36.0	-56.9	-34.7	10.3	30.7	78.5	65.9	290.6
	Change in Soil Moisture Storage (mm)		0.0	0.0	0.0	0.0	0.0	-36.0	-56.9	-34.7	10.3	30.7	78.5	0.0	-
Pervious Components	Water Holding Capacity	Holding Capacity (max. 125 mm)		125.0	125.0	125.0	125.0	89.0	32.0	0.0	10.3	41.0	119.5	125.0	-
	Water Surplus Available	for Infiltration or Runoff	67.8	60.0	57.2	44.8	3.1	0.0	0.0	0.0	0.0	0.0	0.0	60.4	293.3
		Potential Infiltration based on MECP Infiltration Factor (mm)	33.9	30.0	28.6	22.4	1.6	0.0	0.0	0.0	0.0	0.0	0.0	30.2	146.7
	Treed	Potential Surface Water Runoff (mm)	33.9	30.0	28.6	22.4	1.6	0.0	0.0	0.0	0.0	0.0	0.0	30.2	146.7
		Potential Infiltration based on MECP Infiltration Factor (mm)	27.1	24.0	22.9	17.9	1.3	0.0	0.0	0.0	0.0	0.0	0.0	24.2	117.3
	Lawn	Potential Surface Water Runoff (mm)	40.7	36.0	34.3	26.9	1.9	0.0	0.0	0.0	0.0	0.0	0.0	36.2	176.0
	Precipitation: P (mm)								-						877.3
Impervious Components	Potential Evaporation: P	E (mm), Assume 15%							-						131.6
	Potential Surface Water	Runoff: P - PE (mm)							-						745.7

	PRE- AND POST-DEVELOPMENT WATER BALANCE										
		Total Land Area (m ²)	Impervious Factor	Impervious Area (m ²)	Pervious Area (m2)	Runoff (m ³ /annum)	Infiltration (m ³ /annum)	Runoff Increase Pre to Post			
	Woodland Area (approx. 5% of total)	31800.0	0%	0.0	31800.0	4663.9	4663.9				
	Pasture/Lawn Area	595800.0	0%	0.0	595800.0	104857.9	69905.3	155%			
Existing Land Use (Pre- Development)	Paved Areas	7500.0	100%	7500.0	0.0	5592.8	0.0	Infiltration Decrease Pre to Post			
	Rooftop Area	1550.0	100%	1550.0	0.0	1155.8	0.0	-51%			
	TOTAL (approx. 63.66 ha)	636,650	1%	9,050	627,600	116,270	74,569	-51%			
	Woodland Area	0.0	0%	0.0	0.0	0.0	0.0	Infiltration Required to Meet Pre-			
Proposed Land Use	Pasture/Lawn Area	313250.0	0%	0.0	313250.0	55130.5	36753.6	Development Conditions (m ³)			
(Post-Development No	Paved Areas	161500.0	100%	161500.0	0.0	120431.4	0.0				
Mitigation)	Rooftop Area	161900.0	100%	161900.0	0.0	120729.6	0.0	37,815			
	TOTAL (approx. 63.66 ha)	636,650	51%	323,400	313,250	296,291	36,754				

Notes	Infiltration Criteria	Site Description	Infiltration Factor	Site Description	Infiltration Factor
1. Both potential infiltration and surface water runoff are independent of temperature	Topography	Steeply Rolling Land - Average Slope 3.8 m/km to 28 m/km	0.15	Steeply Rolling Land - Average Slope 3.8 m/km to 28 m/km	0.15
2. Assumption is in January maximum soil moisture storage value is present (125mm)	Soils	Tills	0.15	Tills	0.15
 Water Holding Capacity & Infiltration Factors taken from Table 3.1 of MOE SWMPDM, 2003 	Cover	Woodland/FOM/FOD/FOC/SWM/SWD/CUT	0.2	Cultivated Land/AGR/ANTH/CGL	0.1
		Sum of Infiltration Factors	0.5	Sum of Infiltration Factors	0.4

Average Temp. and Precip. taken from Environment Canada station "Georgetown WWTP" between 1981 and 2010
 Adjusting Factor for U based on Lorente, 1961

Appendix J

Long Term High Groundwater Level Monitoring (to date)

Monitoring			High Gr	oundwater Le	vel / Depth (m	ı) / Elev.		
Well ID	May 2023	June 2023	July 2023	Aug 2023	Sept 2023	Oct 2023	Nov 2023	Dec 2023 ²
BH/MW 1	0.8 / 191.5	0.8 / 191.5	1.0 / 191.3	0.9 / 191.4	1.1 / 191.2	1.4 / 190.9	1.7 / 190.6	1.6 / 190.7
BH/MW 2	0.7 / 190.5	0.6 / 190.6	0.7 / 190.5	0.7 / 190.5	1.1 / 190.1	1.4 / 189.8	1.7 / 189.5	1.7 / 189.6
BH/MW 13	1.0 / 189.3	1.1 / 189.2	1.2 / 189.1	1.2 / 189.1	1.6 / 188.7	2.0 / 188.3	2.4 / 187.9	2.4 / 188.0
BH/MW 14	0.5 / 189.6 ³	0.6 / 189.5	0.7 / 189.4	0.6 / 189.5	1.0 / 189.1	1.3 / 188.8	1.7 / 188.4	1.8 / 188.3
BH/MW 22 ¹	0.5 / 189.0	0.6 / 188.9	0.6 / 188.9	0.6 / 188.8	1.4 / 188.1	0.9 / 188.5	0.8 / 188.6	0.6 / 188.9
BH/MW 23	1.6 / 187.8	1.1 / 188.3	1.3 / 188.1	1.3 / 188.1	1.8 / 187.7	2.2 / 187.2	2.5 / 186.9	2.6 / 186.8
BH/MW 24	0.6 / 188.9 ³	0.9 / 188.7 ³	0.8 / 188.7 ³	0.8 / 188.7 ³	1.0 / 188.5	1.1 / 188.4	1.0 / 188.5	0.7 / 188.8
BH/MW 26 ¹	1.1 / 188.2	1.3 / 188.0	1.3 / 188.0	1.3 / 188.0	1.5 / 187.9	1.8 / 187.6	1.6 / 187.7	1.4 / 187.9
BH/MW 28	1.0 / 188.6	1.0 / 188.6	0.9 / 188.7	0.9 / 188.7	1.2 / 188.4	1.4 / 188.2	1.4 / 188.2	1.2 / 188.4
BH/MW 31 ¹	1.0 / 189.5	1.2 / 189.3	1.2 / 189.3	1.2 / 189.4	1.4 / 189.2	1.8 / 188.8	2.0 / 188.6	2.0 / 188.5
BH/MW 35	0.6 / 190.8	0.5 / 190.9	0.5 / 190.9	0.6 / 190.8	1.3 / 190.1	1.9 / 189.5	1.7 / 189.7	1.4 / 190.0
BH/MW 37	1.7 / 190.4	1.3 / 190.7	1.3 / 190.7	1.3 / 190.7	1.5 / 190.5	1.9 / 190.1	2.3 / 189.7	2.5 / 189.5
BH/MW 40 ¹	0.5 / 189.7	0.9 / 189.3	1.0 / 189.2	1.0 / 189.2	1.4 / 188.8	1.9 / 188.3	2.0 / 188.2	1.5 / 188.7
BH/MW 43 ¹	-0.4 / 186.5	-0.1 / 186.3	-0.2 / 186.4	-0.3 / 186.4	-0.0 / 186.2	0.3 / 185.8	0.5 / 185.7	0.4 / 185.7
BH/MW 45	3.5 / 185.0	3.3 / 185.2	3.3 / 185.2	3.3 / 185.2	3.5 / 185.0	3.7 / 184.8	3.8 / 184.7	3.8 / 184.7
BH/MW 52 ¹	Well	Well	Well	Well	Well	Well	Well	Well
	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed

1. Manual measurements – no logger monitoring in BH/MWs 22, 26, 31, 40, 43, and 52

2. Preliminary manual measurements – December 2023

3. Manual measurement - Loggers installed at a later date

