

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 6360 REGIONAL ROAD 25 **TOWN OF MILTON, ONTARIO**

Prepared for: Thomas Robert Colbeck

7050 Appleby Line Milton, Ontario L2E 0M5

Attention: Mr. Rob Colbeck

Prepared by: Terraprobe Inc.

11 Indell Lane Brampton, Ontario

L6T 3Y3

File No 1-22-0209-42 March 3, 2023 ©Terraprobe Inc.

TABLE OF CONTENTS

SECT	ΓΙΟΝ		PAGE			
1.0	EXE	CUTIVE SUMMARY	1			
2.0	INTRODUCTION					
	2.1	Site Description				
	2.2	Property Ownership				
	2.3	Current and Proposed Future Uses	5			
		2.3.1 Current Land Use	5			
		2.3.2 Future Land Use				
	2.4	Applicable Site Condition Standard	5			
3.0	BAC	BACKGROUND INFORMATION				
	3.1	Physical Setting				
		3.1.1 Water Bodies and Area of Natural Significance				
		3.1.2 Topography and Surface Water Drainage				
	3.2	Past Investigations	8			
4.0	SCO	PE OF THE INVESTIGATION				
	4.1	Overview of Site Investigation				
	4.2	Media Investigated				
		4.2.1 Rationale for Inclusion or Exclusion of Media				
		4.2.2 Overview of Field Investigation of Media				
	4.3	Deviations from the Sampling and Analysis Plan				
	4.4	Impediments	9			
5.0	INVI	ESTIGATION METHOD				
	5.1	General				
	5.2	Drilling				
	5.3	Soil Sampling				
		5.3.1 Equipment Used				
		5.3.2 Geological Description of Soil				
	5.4	Field Screening Measurements				
	5.5	Groundwater Monitoring Well Installation				
	5.6	Field Measurement of Water Quality Parameter Ground Water: Sampling				
	5.7 5.8	Groundwater Sampling				
	5.8 5.9	Sediment SamplingAnalytical Testing				
	5.10	Residue Management Procedures				
	3.10	5.10.1 Soil Cuttings				
		5.10.2 Ground Water				
		5.10.3 Fluids from Cleaning				
	5.11	Elevation Surveying				
	5.12	Quality Assurance and Quality Control Measures				
	- · - 	5.12.1 Containers, Labelling, Handling and Chain of Custody				
		5.12.2 Equipment Cleaning Procedures				
		5.12.3 Field Quality Control Measures				

		5.12.4	Deviations in the Quality Assurance and Quality Control Measures	15
6.0	REVI	IEW AND	DEVALUATION	15
0.0	6.1		zy	
	0.1	6.1.1	Geological Units Thickness (Estimate)	
		6.1.2	Elevations of Geological Units	
		6.1.3	Material in Geological Units	
		6.1.4	Properties of Aquifers and Aquitards	
		6.1.5	Rationale for Choice of Aquifers and Aquitards Investigated	
	6.2		dwater Elevations and Flow Direction.	
	0.2	6.2.1	Rationale for Monitoring Well Locations and Screen Intervals	
		6.2.2	Results of Interface Probe Measurements	
		6.2.3	Thickness of Free-Flowing Product	
		6.2.4	Ground Water Elevations.	
		6.2.5	Interpreted Direction of Groundwater Flow	
		6.2.6	Assessment of Temporal Variability	
		6.2.7	Influence of Buried Utilities	
	6.3		dwater Hydraulic Gradients	
	0.5	6.3.1	Hydraulic Conductivity	
		6.3.2	Horizontal Hydraulic Gradients	
		6.3.3	Vertical Hydraulic Gradients	
	6.4		m to Fine Textured Soil	
	0.1	6.4.1	Rationale for Number of Grain Size Samples	
		6.4.2	Results of Grain Size Analysis	
	6.5	-	eld Screening	
	6.6		uality	
		6.6.1	Location and Depth of Samples	
		6.6.2	Comparison to Applicable Standards	
		6.6.3	Contaminants of Concern	
		6.6.4	Chemical or Biological Transformations	
		6.6.5	Contamination Impact on Other Media	
		6.6.6	Presence of Light or Dense Non-Aqueous Phase Liquids	
	6.7	Ground	dwater Quality	
		6.7.1	Location and Depth of Samples	
		6.7.2	Field Filtering	
		6.7.3	Comparison to Applicable Standards	
		6.7.4	Contaminants of Concern	22
		6.7.5	Chemical or Biological Transformations	22
		6.7.6	Contamination Impact on Other Media	
		6.7.7	Presence of Light or Dense Non-Aqueous Phase Liquids	
	6.8	Sedime	ent Quality	23
	6.9		Assurance and Quality Control Results	
		6.9.1	Types of Quality Control Samples Collected and Results	23
		6.9.2	Samples Not Handled in Accordance with the Analytical Methods	23
		6.9.3	Subsection 47 (3) of the Regulation	
		6.9.4	Results Qualified by Laboratory	
		6.9.5	Overall Quality of Field Data	24
7.0	CONT	CI HOION	NG.	25
7.0	CON	CLOSIOL	NS	∠೨

8.0	SIGNATURES	27
9.0	REFERENCES	28
10.0	LIMITATIONS	29

TABLES:

- Table 1 Geological Units
- Table 2 Monitoring Well Construction
- Table 3 Ground Water Levels
- Table 4 pH Soil Results
- Table 5 Metals, Inorganic & ORPs Soil Result
- Table 6 Polychlorinated biphenyl in Soil Results
- Table 7 Petroleum Hydrocarbons Soils Results
- Table 8 Polychlorinated biphenyl Groundwater Results
- Table 9 Petroleum Hydrocarbons Groundwater Results
- Table 10 Volatile Organic Compounds Groundwater Results

FIGURES:

- Figure 1 Phase Two Property Location Plan
- Figure 2 PCA Locations
- Figure 3 APEC Locations and Borehole/Monitoring Well Location
- Figure 4 Groundwater Elevations, Contours & Flow Direction
- Figure 5 Monitoring Well and Cross-Section Location Plan
- Figure 6 Cross-Section A-A'

APPENDICES:

- Appendix A Site Survey
- Appendix B Sampling and Analysis Plan
- Appendix C Standard Operating Procedures
- Appendix D Borehole Logs
- Appendix E Grain Size Analysis
- Appendix F Certificates of Analysis

1.0 EXECUTIVE SUMMARY

Terraprobe Inc. (Terraprobe) was retained by Mr. Thomas Robert Colbeck to complete a Phase Two Environmental Site Assessment (ESA) of the property (herein referred to as "Property or Phase Two Property") situated on the southwest corner of Louis St. Laurent Avenue and Regional Road 25. The Property is bound by Regional Road 25 to the north, Louis St. Laurent Avenue to the west, and residential buildings to the east and south. The municipal address of the Property is 6360 Regional Road 25, in the Town of Milton, Ontario.

The Phase Two Property is rectangular in shape and covers an area of approximately 0.99 ha (2.44 acres). The Property is currently occupied by a residential dwelling, accessory structure (barn), and undeveloped grassed land. The residential dwelling is a one-story building (including basement) located at the central portion of the Property and barn is located at the southwest portion of the Property. The surrounding area is predominantly developed for residential and Agricultural use with some vacant land. The Property is currently considered to be in residential land use, per Ontario Regulation 153/04 (O.Reg.153/04).

Terraprobe previously completed a Phase One ESA for the Property. The findings are provided in a report entitled "*Phase One Environmental Site Assessment, 6360 Regional Road, Town of Milton, Ontario*", dated December 8, 2022.

The Phase One ESA identified the following potential contaminating activities (PCAs) that may result in areas of potential environmental concerns (APECs) of the Property:

Area of Potential Environmental Concern	Location of Area of Potential Environmenta I Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1	Entire Property	#30 – Importation of Fill Material of Unknown Quality	On-Site	Metals and Inorganics	Soil
APEC 2	Central Portion of the Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, and BTEX	Soil and Groundwater
APEC 3	Northwest Portion of the Property	#Other 1 – O. Reg 347 Waste Receiver	Off-Site	PCBs, PHCs, and BTEX	Groundwater

The PCAs resulted in three (3) Areas of Potential Environmental Concern (APECs) for the Property. APEC 1 was related to the presence of fill of unknown quality across the Property. APEC 2 was related to the

presence of a historic above-ground heating oil storage tank. APEC 3 was related to an adjacent property that was classified as a waste receiver.

The Phase One ESA recommended that a Phase Two Environmental Site Assessment must be completed to investigate the APECs for the Contaminants of Concern that have been identified on the Property. The Phase Two ESA was completed in compliance with amended O.Reg.153/04.

The conclusions arising from the Phase Two ESA are as follows:

- The subsurface investigation was conducted in conjunction with geotechnical and hydrogeological investigations at the Property. A total of nine (9) environmental boreholes were advanced on the Property to a depth of approximately 9.4 m below ground surface (mbgs). Six (6) of these boreholes were installed with monitoring wells (BH1, BH9, BH10, BH13, BH15, and BH16).
- Soil conditions encountered withing the borehole consisted primarily of a layer of surficial material, earth-fill, and native soils. The surficial materials layer was composed of topsoil was encountered at all borehole locations and ranged approximately between 100 and 140 mm in thickness. The earth fill material extended to a depth of 0.3 to 0.8 mbgs. The earth-fill primarily consisted of clayey silt, with trace gravel, organics matter and sand, compact, brown, and moist. The earth-fill layer was underlain by the naive soil. The fill material appears to comprise of reworked disturbed/weathered native soils at the Property.
- Native soils were encountered beneath the fill material soil. Native soil consisted of a clayey silt layer comprised of some sand to sandy, trace gravel, very stiff to hard, brown to reddish brown, and moist. The native clayey silt layer extended to a depth of approximately 0.8 to 6.1 mbgs.
- Below approximately 6.1 mbgs, a layer of sandy silt to sand and silt layer was observed. This layer was comprised of trace to some clay, trace to some gravel, very dense, reddish brown, and moist. This layer extended to a depth of approximately 6.1 to 9.4 mbgs. Bedrock was not encountered within the depth of the investigation.
- A total of four (4) grain size analyses were conducted to confirm the on-site soil texture on the Property. According to the grain size analysis the soil at the Property is Medium-Fine and Coarse in texture. However, when comparing the environmental analysis results to Ontario soil guidelines, stricter standards for example, coarse-textured soil standards were used as a conservative measure.
- The results of the samples submitted for chemical analysis were compared to the full depth generic site condition standards in a potable groundwater condition as contained in Table 2 of the Ministry of Environment, Conservation and Parks (MECP) publication "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" for potable groundwater condition residential/parkland/institutional Property Use, April 15, 2011.
- Selected soil samples were submitted for chemical analysis for metals, including hydride-forming metals (As, Sb, Se, Cr) and selected ORPs, polychlorinated biphenyls (PCBs), petroleum hydrocarbon (PHC F1-F4), including benzene, toluene, ethylbenzene, xylene (BTEX).
 - All soil samples submitted for chemical analysis met the applicable site condition standards.

- Selected groundwater samples were submitted for analysis for metals, polychlorinated biphenyls (PCBs), petroleum hydrocarbons (PHCs F1-F4), and volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, xylene (BTEX).
 - All groundwater samples submitted for chemical analysis met the applicable site condition standards.

Based on the findings of Phase Two ESA, a Record of Site Condition (RSC) can be filed with the Ministry of the Environment, Conservation and Parks (MECP) as per O.Reg. 153/04, if required.

All wells installed during the subsurface soil and groundwater investigation are required to be decommissioned under O.Reg.903 when they are no longer needed for groundwater observation.

2.0 INTRODUCTION

Terraprobe Inc. (Terraprobe) was retained by Thomas Robert Colbeck to complete a Phase Two Environmental Site Assessment (ESA) of the property (herein referred to as "Property or Phase Two Property") situated at the southwest corner of Louis St. Laurent Avenue and Regional Road 25. The Property is bound by Regional Road 25 to the north, Louis St. Laurent Avenue to the west, and residential buildings to the east and south. The municipal address of the Property is 6360 Regional Road 25, in the Town of Milton, Ontario.

The Phase Two Property location can be found in Figure 1.

2.1 Site Description

The Property is situated at the southwest corner of Louis St. Laurent Avenue and Regional Road 25. The Property is identified with the municipal address of 6360 Regional Road 25, Town of Milton, Ontario.

The Property is square in shape and covers an area of approximately 0.99 ha (2.44 acres). The Property is currently occupied by a residential dwelling, accessory structure (barn), and undeveloped grassed land. The residential dwelling is a one-storey building (including basement) located at the central portion of the Property at 6360 Regional Road 25 and barn is located at the southwest portion of the Property.

It is understood that the existing structures on the Property are proposed to be demolished to support the redevelopment of the site to include an 8 storey Long Term Care Home structure with the potential of one level of underground parking that would cover most of the site, and driveways/access routes. The development will be fully serviced with municipal water, sewage, and roads. Under O.Reg.153/04 the future land use of the Property would be considered residential land use.

The surrounding area is predominantly developed for residential and Agricultural use with some vacant land. The Property is currently to be in residential land use, per Ontario Regulation 153/04 (O.Reg.153/04).

Site features are presented in Figure 2. The site plan is shown in Appendix A.

The Phase Two Property information is provided below:

Phase Two Property Information

Fliase I wo Froperty illiorination	OH CONTRACTOR CONTRACT
Logal Description	Part Lot 8 Con 2 Traf (NS)
Legal Description	• Part 2, 20R-9286
DIN(a)	• 25081-1956 (LT)
PIN(s)	• 25081-2354 (LT)
Municipal Address	6360 Regional Road 25, Town of Milton, Ontario
Zoning	The Town of Milton Zoning By-Law (No. 144-2003) was accessed, and the Property
Zoning	is zoned as Future Development Zone (FD).
Area	0.99 ha (2.44 acres)
Zone Northing Easting	17 T 593176E 4816474N

2.2 Property Ownership

The ownership information for the Phase Two Property is as follows:

Property Owner Information	Thomas Robert Colbeck (6360 Regional Road 25)
Persons, other than Property Owner, who engaged the Qualified Person to conduct the Phase One ESA	Rob Colbeck Thomas Robert Colbeck 7050 Appleby Line Milton, Ontario
	L9E 0M5

2.3 Current and Proposed Future Uses

2.3.1 Current Land Use

The Property is currently consisting of a residential dwelling, accessory structure, and undeveloped land. The residential dwelling is a one-story building (including basement) located at the central portion of the Property at 6360 Regional Road 25 and barn is located at the southwest portion of the Property. The surrounding area is predominantly developed for residential and Agricultural use with some vacant land. The Property is currently considered to be in residential land use, per Ontario Regulation 153/04 (O.Reg.153/04).

2.3.2 Future Land Use

The existing structures on the Property are proposed to be demolished to support the redevelopment of the site to include an 8 storey Long Term Care Home structure with the potential of one level of underground parking that would cover most of the site, and driveways/access routes. The development will be fully serviced with municipal water, sewage, and roads. Under O.Reg.153/04 the future land use of the Property would be considered residential land use.

2.4 Applicable Site Condition Standard

The applicable Site Condition Standards (SCS) for the future use of the subject property were determined to be those in Table 2 of April 15, 2011, Ontario Ministry of the Environment, Conservation and Parks (MECP) "Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act" for Residential/Parkland/Institutional land uses for coarse-textured soils in a potable groundwater condition. These are the applicable standards for the following reasons:

- Four (4) grain size analysis was conducted on the Property which resulted in a mix of Medium Fine and Coarse textured soil. However, stricter standards for example, coarse-textured soil standards were used as a conservative measure.
- The Property will be developed for residential purposes.

- Bedrock was not encountered within the depth of investigation and was expected to be approximately 25 m bgs based on MECP well record.
- The site is in an area of Milton which is serviced with municipal water services, using its potable water from Lake Ontario, however MECP Well record indicates presence of private wells in the area
- The site is not located within 30 m of a surface water body.
- The soil pH on the Property was determined to be between 5 and 9.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

3.1.1 Water Bodies and Area of Natural Significance

Mapping from the Ontario Ministry of Natural Resources and Forestry (MNRF) was reviewed to determine if water bodies were present on the Property and within the Study Area. The MNRF National Heritage Information Centre database for listings of Areas of Natural or Scientific Interest (ANSIs) was reviewed. The information is summarized below.

Water Bodies (Property)	No water bodies were identified on the Property			
Water Bodies (Study Area)	 One water body was identified within the Phase One Study Area. It is the Sixteen Mile Creek located approximately 315 meters northeast from the Property. 			
Wetland	Provincially Significant			
(Property)	No Provincially Significant wetlands were present on the Property.			
	Non- Provincially Significant			
	• No Non- Provincially Significant wetlands were present on the Property.			
	<u>Unevaluated</u>			
	No Unevaluated wetlands were present on the Property.			

Wetland	Provincially Significant			
(Study Area)	 A Provincially Significant Wetland was present in the Study Area approximately 310 meters northeast from the Property. Non- Provincially Significant No Non- Provincially Significant wetlands were present in the Study Area. Unevaluated 			
	No Unevaluated wetlands were present in the Study Area.			
ANSIs	Provincially Significant Life Science ANSI			
(Property)	No Life Science ANSIs were identified on the Property.			
	Provincially Significant Earth Science ANSI			
	No Earth Science ANSIs were identified on the Property.			
ANSIs	Provincially Significant Life Science ANSI			
(Study Area)	No Life Science ANSIs were identified in the Study Area.			
	Provincially Significant Earth Science ANSI No Earth Science ANSIs were identified in the Study Area.			

3.1.2 Topography and Surface Water Drainage

A topographic map from the MNRF and the geological mapping produced by the Ontario Ministry of Northern Development and Mines - *Ontario Geological Survey* was reviewed. The information gleaned from the mapping is summarized below.

Topography	Based on topographic information from the Ministry of Natural Resources topographic map, Toporama, the Subject Property's ground surface elevation is approximately 193 m above mean sea level. The ground surface slopes gently towards the southeast.
Hydrogeology	There are no surface water bodies or features located on the Property. There is a creek known as Sixteen Mile Creek located in the Study Area, approximately 300 m northeast from the Property. The ground water and surface water are expected to flow in the east/southeast direction towards Sixteen Mile Creek.
Geology (overburden)	Based on published geological information for the area, the near-surface overburden on the Property is mainly comprised of silt and clay, minor sand and gravel interbedded silt and clay and gritty, pebbly flow till and rainout deposits (8b).
	The Property is located in the physiographic region known as Peel Plain (33), within the physiographic landform of Bevelled Till Plains (8).
Geology (bedrock)	The bedrock on the Property is of the Queenston Formation, which is comprised of shale, limestone, dolostone, and siltstone (55a).

Geology (depth to bedrock)	Based on the MECP well records, the depth to bedrock is approximately 25 m
	below ground surface.

3.2 Past Investigations

Pervious investigation for the Property, which was conducted by Terraprobe Inc., is summarized below:

Report Title	Phase One ESA, 6360 Regional Road 25, Town of Milton, Ontario
Report Date	December 8, 2022
File No.	1-22-0209-41
Prepared By	Terraprobe Inc.
Prepared For	Thomas Robert Colbeck

The Phase One ESA was completed as per the requirements of Ontario Regulation 153/04. The Phase One Environmental Site Assessment (ESA) identified the following Potential Contaminating Activities (PCAs) resulting in Areas of Potential Environmental Concern (APEC) on the Phase One Property:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1	Entire Property	#30 – Importation of Fill Material of Unknown Quality	On-Site	Metals and Inorganics	Soil
APEC 2	Central Portion of the Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, and BTEX	Soil and Groundwater
APEC 3	Northwest Portion of the Property	#Other 1 – O. Reg 347 Waste Receiver	Off-Site	PCBs, PHCs, and BTEX	Groundwater

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The investigation of the Property was completed in conjunction with geotechnical and hydrogeological studies that are reported separately. The Sampling and Analysis Plan is presented in Appendix B. The scope of work conducted by Terraprobe is summarized below:

Summary of Scope of Work

June 2022	 9 Environmental Boreholes 5 monitoring wells 2 set of water levels from all 5 monitoring wells 	 9 metals including HFMs (As, Sb, Se, Cr) and ORPs analyses + 1 duplicates of each parameter 2 PCB analyses + 1 duplicate of each parameter 4 PHC and VOCs (including BTEX) analyses + 1 duplicates of each parameter Four (4) grain size analysis was conducted 	 3 PHC and VOCs (including BTEX) 1 duplicate of each parameter + 1 Trip Blank for VOCs 3 PCBs + 1 duplicate of each parameter
-----------	--	--	---

*Note: PHC – petroleum hydrocarbons

VOC – volatile organic compound

PCB – polychlorinated biphenyl

ORP – Other Regulated Parameters HFM – Hydride Forming Metals

4.2 Media Investigated

4.2.1 Rationale for Inclusion or Exclusion of Media

Media	Included or Excluded	Rationale
Soil	Included	Based upon the Phase One ESA, soil sampling was required on the Property of the identified PCoCs. Sample locations were selected to investigate all the identified APECs.
Sediment	Excluded	Surface water bodies were not present on the Property. As such, sediment sampling was not conducted during the investigation.
Ground Water	Included	Based upon the Phase One ESA, groundwater sampling was required on the Property of the identified PCoCs. Sample locations were selected to investigate all the identified APECs.
Surface Water	Excluded	Surface water bodies were not present on the Property. As such, surface water sampling was not conducted during the investigation.

4.2.2 Overview of Field Investigation of Media

Soil sampling was conducted during the drilling program using a split spoon sampling device. Groundwater sampling was conducted from monitoring wells installed within the completed boreholes.

4.3 Deviations from the Sampling and Analysis Plan

The sampling and analysis plan is provided in Appendix B. There was no deviation from the sampling & analysis plan.

4.4 Impediments

Impediments were not encountered during the investigation.

5.0 INVESTIGATION METHOD

5.1 General

Utility clearances were undertaken before commencing the subsurface investigation. The Phase Two ESA followed the methods outlined in the following documents:

- Ontario Ministry of the Environment and Climate Change "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996)
- Ontario Ministry of the Environment and Climate Change "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011)
- Ontario Ministry of the Environment and Climate Change "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011)

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures. The Standard Operating Procedures are presented in Appendix C.

5.2 Drilling

The drilling information for the Phase Two ESA is provided below:

Date of Drilling	June 14-17, 2022
Borehole	BH1, BH3, BH6, BH9, BH10, BH11, BH13, BH15, and BH16.
Name of Contractor	TEC Drilling
	- Track Mount Drill Rigs
Equipment Used	- Soil Stem Augers
Equipment Osed	- Hallow Stem Augers/mud rotary
	- Two (2)-inch Split Spoon Sampling Device
Decontamination Measures	The split spoon sampling device was washed between each sample to minimize potential
Decontamination Measures	cross-contamination
Sample Frequency	Please refer to the borehole logs in Appendix D for recovered soil samples

5.3 Soil Sampling

5.3.1 Equipment Used

- Laboratory supplied sampling containers
- Nitrile gloves
- Cooler with loose ice
- RKI EAGLE 2

5.3.2 Geological Description of Soil

The geological description of each soil sample collected is presented on the borehole logs in Appendix D.

5.4 Field Screening Measurements

Selected soil samples were screened in the field using portable hydrocarbon vapour testing equipment and following the procedure outlined in the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" published by the Ontario Ministry of the Environment and Climate Change. All samples were screened using an RKI Instruments EAGLE 2 Monitor. The monitor has a range of 0 parts per million (ppm) to 50,000 ppm and an accuracy of +/- 5%. The monitor was calibrated with hexane before field screening as per the calibration procedure outlined by RKI Instruments in "Instruction Manual Eagle Series Portable Multi-Gas Detector 71-0028RK" released August 8, 2010.

Field screening measurements were used to help select samples for petroleum hydrocarbon and volatile organic compounds laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix D.

5.5 Groundwater Monitoring Well Installation

The monitoring well installation information for the Phase Two ESA is provided below:

Date of Drilling	June 14 –17. 2022					
Monitoring Well	BH1, BH9, BH10, BH13, BH15, and BH16					
Name of Contractor	TEC Drilling					
	- Track Mount Drill Rigs					
Equipment Used	- Soil Stem Augers					
Equipment Used	- Hallow Stem Augers/mud rotary					
	- Two (2)-inch Split Spoon Sampling Device					
Decontamination Measures	The split spoon sampling device was washed between each sample to minimize					
Decontainmation Measures	potential cross-contamination					
Sample Frequency	No groundwater samples were collected during this drilling event.					
	The wells were constructed of 50-mm (2-in) ID PVC screens and risers. Filter sand					
Well Construction	was placed around the well screen to approximately 0.6 m above the top of the screen.					
	The wells were then backfilled with bentonite.					
Well Elevations	Monitoring well elevations and depths are presented in Table 2 and Table 3.					

The monitoring wells were developed by surging the wells by an inertial pump fitted with a surge block. The monitoring wells were then purged by removing approximately five (5) to ten (10) casing volumes or until the well was dry. The monitoring well locations are provided in Figure 4.

5.6 Field Measurement of Water Quality Parameter Ground Water: Sampling

A Hanna Model 991300 Hand-held System was used to measure the pH, conductivity, and temperature of the groundwater. During the purging of the monitoring wells and before sampling, readings were collected for every casing volume. Purging continued until the parameters had stabilized, indicating that formation water was being drawn through the monitoring well. The Hanna instrument measurements comply with the following EPA approved test methods:

- Temperature Standard Method 2550 B-2000
- Specific Conductance EPA Method 120.1 and Standard Method 2 2510 B-1997
- pH Standard Method 4500-H+B-2000 and USGS Method I-1586-85

The field measurements of water quality parameters are present below:

Range

- pH 0.00 to 14.00 pH
- EC 0.00 to 20.00 mS/cm
- TDS 0.00 to 10.00 ppt (g/L)
- Temperature 0.0 to 60.0°C

Resolution

- pH 0.01 pH
- EC 0.01 mS/cm
- TDS 0.01 ppt
- Temperature 0.1°C

Accuracy

- pH ±0.01 pH
- EC $\pm 2\%$ F.S.
- TDS $\pm 2\%$ F.S.
- Temperature ± 0.5 °C

5.7 Groundwater Sampling

The monitoring wells were purged and sampled using an inertia pump and tubing. Stabilization of parameters (pH, D.O., conductivity, temperature, etc.) and turbidity of the purged water are monitored before a sample is taken; thus, low flow methods facilitate equilibrium with the surrounding formation water and produce samples that are representative of the formation water.

Stabilization was considered to occur when consecutive readings were within the following:

- <u>Conductivity</u> ± 3%
- Temperature ± 0.2 °C
- $pH \pm 0.1$ unit

5.8 Sediment Sampling

No sediment sampling was conducted as part of this investigation.

5.9 Analytical Testing

AGAT Laboratories conducted analytical testing of soil and groundwater. Laboratory Certificates of Analyses were received for all samples submitted for chemical analysis. The soil and groundwater samples submitted for chemical analysis are summarized in the Sampling and Analysis Plan presented in Appendix B.

5.10 Residue Management Procedures

5.10.1 Soil Cuttings

Soil cuttings generated during the drilling activities were stored in drums and left on the Property for future appropriate disposal.

5.10.2 Ground Water

The development and purging water generated during the groundwater sampling was placed in the drums on the Property for future appropriate disposal.

5.10.3 Fluids from Cleaning

The fluids from cleaning were disposed of in the drums on the Property for future appropriate disposal.

5.11 Elevation Surveying

The elevations of the boreholes on the Property were surveyed by Terraprobe using a Trimble R10 survey system. The Trimble R10 is a differential global positioning system (GPS) that involves the cooperation of two receivers, one that's stationary and another that's roving around making position measurements. The elevation of each borehole on the Property is presented on the borehole logs in Appendix D.

5.12 Quality Assurance and Quality Control Measures

5.12.1 Containers, Labelling, Handling and Chain of Custody

Containers

The following laboratory-supplied sample containers were used for all sampling conducted on the Property.

Soil Parameters	Container
Chloride, electrical conductivity	250 mL glass jar, Teflon lined lid
Cyanide (CN-)	250 mL glass jar, Teflon lined lid
Hexavalent chromium	250 mL glass jar, Teflon lined lid
Metals (includes hydride-forming metals, SAR, HWS boron, calcium, magnesium, sodium)	250 mL glass jar, Teflon lined lid

Soil Parameters	Container
Mercury, methyl mercury	250 mL glass jar, Teflon lined lid
pH	250 mL glass jar, Teflon lined lid
BTEX, PHCs (F1)	40–60 mL glass vial (charged with methanol preservative, pre-weighed) and a glass jar (for moisture content)
PHCs (F2-F4), PCBs	120 mL glass jar, Teflon lined lid
Ground Water Parameters	Container
BTEX, PHCs (F1), VOCs	40–60 mL glass vials (minimum of 2)
PHCs (F2-F4)	2 x 500 mL amber glass bottle, Teflon lined lid
PCBs	2 x 500 mL amber glass bottle, Teflon lined lid

Labelling

All sampling containers were identified with laboratory-supplied labels. The labels included the following information:

- Unique Sample ID
- Company Name
- Date and Time
- Project Number

Handling

Samples were placed in coolers with loose ice after collection for transportation to the laboratory. Sample hold times were met for all submitted soil and groundwater samples.

Chain of Custody

Laboratory-supplied Chain of Custody forms were completed for all samples submitted for analysis.

During soil sampling, the split spoon sampling device was washed between samples to minimize cross-contamination. While handling all samples, Terraprobe staff used nitrile gloves. New gloves were used for each sample to avoid cross-contamination.

No deviations from the sampling and analysis plan occurred. Field duplicates were obtained for both soil and groundwater samples at a rate of at least 10%. A trip blank was submitted for the VOC analysis of the groundwater samples

5.12.2 Equipment Cleaning Procedures

All non-dedicated sampling and monitoring equipment must be cleaned following each use. During soil sampling, the split spoon sampling device was washed between samples to minimize cross-contamination. During groundwater sampling, any part of the bladder pump or interface meter, which encountered the groundwater, was cleaned between monitoring wells.

Dedicated equipment (nitrile gloves, terracore samplers, tubing) was changed between each sample to avoid cross-contamination.

5.12.3 Field Quality Control Measures

- All non-dedicated sampling and monitoring equipment was cleaned following each use.
- Sufficient field duplicate samples were collected in each medium being sampled so that at least one
 field duplicate sample can be submitted for laboratory analysis for every ten samples submitted for
 laboratory analysis
- Calibration checks on field instruments occurred daily before the commencement of sampling

5.12.4 Deviations in the Quality Assurance and Quality Control Measures

No deviations from the sampling and analysis plan occurred.

6.0 REVIEW AND EVALUATION

6.1 Geology

Detailed geological information for the site is presented on the borehole logs in Appendix D. The geology is summarized below.

6.1.1 Geological Units Thickness (Estimate)

The geological unit thicknesses are presented in Table 1.

6.1.2 Elevations of Geological Units

The geological unit elevations are presented in Table 1.

6.1.3 Material in Geological Units

Surficial Materials

The surficial materials layer was composed of topsoil was encountered at all borehole locations and ranged approximately between 100 and 140 mm in thickness. A layer of earth-fill material underlays the surficial material on the Property.

Earth Fill

Earth fill material was encountered at all borehole locations and extended to a depth of 0.3 to 0.8 mbgs. The earth-fill primarily consisted of clayey silt, with trace gravel, organics matter and sand, compact, brown, and moist. The earth-fill layer was underlain by the naive soil. The fill material appears to comprise of reworked disturbed/weathered native soils at the Property.

Native Soil

Native soils were encountered beneath the fill material soil. Native soil consisted of a clayey silt layer comprised of some sand to sandy, trace gravel, very stiff to hard, brown to reddish brown, and moist. The native clayey silt layer extended to a depth of approximately 0.8 to 6.1 mbgs. Below approximately 6.1 mbgs, a layer of sandy silt to sand and silt layer was observed. This layer was comprised of trace to some clay, trace to some gravel, very dense, reddish brown, and moist. This layer extended to a depth of approximately 6.1 to 9.4 mbgs. Bedrock was not encountered within the depth of the investigation.

6.1.4 Properties of Aquifers and Aquitards

Earth Fill

The earth-fill on the Property is an unconfined and drained aquifer. The groundwater table on the Property is located below the fill. The fill is hydraulically interconnected to the native soils. Any water within the fill material is expected to migrate downwards into the native soil.

Native Soil

The native soils, consisting of non-cohesive sandy silt layer is part of an unconfined aquifer and are the primary water-bearing unit on the Property. Recharge into the aquifer will be primarily through rainfall events and migration from the north adjoining properties.

Bedrock

Bedrock was not encountered within the depth of the investigation. However, based on geological information the anticipated bedrock would comprise of the Queenston Formation.

6.1.5 Rationale for Choice of Aquifers and Aquitards Investigated

The native soil was chosen for investigation because:

- The likelihood of vertical migration of water from the fill aquifer downward
- The possibility of free groundwater present through recharge from a large area and up-gradient tributaries

6.2 Groundwater Elevations and Flow Direction

6.2.1 Rationale for Monitoring Well Locations and Screen Intervals

Monitoring wells were located across the Property to provide full site coverage. Screen intervals were chosen within the native soil unit to allow for the collection of groundwater samples within the water-bearing aquifer. Deeper boreholes instrumented with monitoring wells were installed for geotechnical and hydrogeological studies for the Property, which were carried out concurrently with the Phase Two ESA.

6.2.2 Results of Interface Probe Measurements

Interface probe measurements indicated that only water was present on the Property. No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected.

6.2.3 Thickness of Free-Flowing Product

No free-flowing product was encountered on the Property.

6.2.4 Ground Water Elevations

Groundwater elevations are presented in Figure 5.

6.2.5 Interpreted Direction of Groundwater Flow

The interpreted direction of groundwater flow is to the southeast. Groundwater flow direction and groundwater elevation contours are presented in Figure 5.

6.2.6 Assessment of Temporal Variability

Two (2) groundwater level measurement events were conducted on the Property in the month of July 2022. The water level was observed to be similar between the measurement events. The data collected is insufficient to discern the temporal variability of the Property.

6.2.7 Influence of Buried Utilities

Subsurface structures and buried utilities on the Property may have affected the groundwater flow.

6.3 Groundwater Hydraulic Gradients

6.3.1 Hydraulic Conductivity

The hydraulic conductivity of the subsurface soils was accessed based on four (4) grain-size analyses. The hydraulic conductivity of the strata of geological units encountered on the Property is discussed in greater detail in the hydrogeological study reported under separate cover. The hydraulic conductivities were calculated for the four (4) native soil samples selected across the Property. The results of the testing are summarized below.

Monitoring Well	Strata Screened / Soil	Hydraı	ulic Conductivity (m/s)
/ Soil Sample	Description	Grain Size	Based on Published Data
BH1 SS8	Sandy silt, some gravel, some clay	1.0 E -9	10 ⁻⁶ to 10 ⁻⁹
BH10 SS5	Sandy silt, clayey, trace gravel	2.5 E -10	10 ⁻¹⁰ to 10 ⁻¹³
BH13 SS7	Sand and silt, some clay, trace gravel	2.25 E -10	10 ⁻¹⁰ to 10 ⁻¹³
BH16 SS9	Silty sand, some gravel, trace clay	4.2 E -8	10 ⁻⁶ to 10 ⁻⁹

The hydraulic conductivity value of the overburden based on constant head and falling head tests, and grain size analyses are in the order of 10⁻⁶ to 10⁻⁹ m/s. The hydraulic conductivity of the native, clayey silt layer is in the order of 10⁻⁹. These values correspond with hydraulic conductivity provided in the published data for the soil types identified at the Property.

6.3.2 Horizontal Hydraulic Gradients

The groundwater table investigation for the Property was within the overburden soil layer. Based on the measured groundwater levels, the horizontal hydraulic gradient of groundwater within the overburden at the Property from BH10 to BH16 was determined to be approximately 0.015 m/m in the east direction. The following calculation was used to determine the horizontal hydraulic gradient.

$$Horizontal\ Hydraulic\ Gradient = \frac{change\ in\ water\ level}{distance\ between\ the\ wells}$$

$$Horizontal\ Hydraulic\ Gradient = \frac{\Delta h}{L} = \frac{BH10 - BH16}{L} = \frac{185.8m - 184.9m}{60m} = \textbf{0.015}\ \textbf{m/m}$$

6.3.3 Vertical Hydraulic Gradients

Vertical Hydraulic Gradients was not calculated as deep well data was not used during the environmental analysis for this Phase Two ESA report.

6.4 Medium to Fine Textured Soil

6.4.1 Rationale for Number of Grain Size Samples

Four (4) samples of the native soils were analyzed for grain size distribution (ASTM D422). Given the area of Phase Two Property and moderate variation in soil type across the Property, it was determined by the Qualified Person that four (4) samples would be provide an adequate representative sample to determine soil texture. The grain size analysis is presented in Appendix E.

6.4.2 Results of Grain Size Analysis

The grain size analysis results are provided in Appendix E and noted on the borehole logs at respective sampling depths. A summary of the grain size analysis results is presented below:

Sample	Sai	mple	Com	position	(% Weight)		Soil		
Number	ID	ID Depth (mbgs) G			bgs) Gravel Sand Silt Clay		Description	Texture	
1	BH1 SS8	7.6-8.2	13	32	42	13	Sandy silt, some gravel, some clay	Medium Fine	
2	BH10 SS5	3.1-3.6	3	31	44	22	Sandy silt, clayey, trave gravel	Medium Fine	
3	BH13 SS7	6.1-6.7	8	36	43	13	Sand and silt, some clay, trace gravel	Medium Fine	
4	BH16 SS9	9.1-9.4	13	49	32	6	Silty sand, some gravel, trace clay	Coarse	

According to O. Reg 153/04, the soil is considered coarse-textured if at least 50 percent by weight of the particles are larger than 75 μ m (0.075 mm). The grain size curves are presented in Appendix E.

6.5 Soil Field Screening

Soil screening was conducted on soil samples from select boreholes using portable hydrocarbon vapour testing equipment and visual and olfactory observations. There was no evidence of impacts based on field observations.

6.6 Soil Quality

Soil samples from nine (9) boreholes were selected for chemical analysis, on the Property. The selected soil samples were analyzed for Metals, Hydride Forming Metals (HFM) and selected ORPs, PCBs, and PHCs (including BTEX). Also, at least one (1) duplicate sample were submitted for each parameter. The location and depths of the samples submitted for chemical analysis are presented below.

6.6.1 Location and Depth of Samples

Soil Sampling Plan & Summary

						Ar	nalytic	al Gro	oups				
Borehole	Sample	N40 I	EC / CAD	DCBs	- LI	DUC	DTEV	Duplicates					
		IVIQI	EC / SAR	PCBS	рπ	PHCS	DIEX	M&I	EC /SAR	PCBs	рН	PHCs	BTEX
1	SS1	✓	✓										
3	SS1	✓	✓										
3	SS5				✓								
6	SS1	✓	✓										
U	SS6				✓								
	SS1	✓	✓										
9	SS5					✓	✓						
	SS7			✓									
	SS1	✓	✓										
10	SS2					✓	✓						
10	SS5				✓						✓		
	SS6					✓	✓						
11	SS1	✓	✓					✓	✓				
13	SS1	✓	✓										
13	SS8			✓		✓	✓			✓		✓	✓
15	SS1	✓	✓										
13	SS4				✓								
16	SS1	✓	✓										

Note: ✓- Meets MECP Table 2 RPI CT Standards

X - Exceeds MECP Table 2 RPI CT Standards

- Not sampled

6.6.2 Comparison to Applicable Standards

The rationale for sampling location and frequency are presented in the Sampling and Analysis Plan in Appendix B. The laboratory Certificates of Analysis are provided in Appendix F. The results of soil chemical analysis are provided in Tables 4, 5, 6, and 7. There were no exceedances of Table 2 RPI CT Standards for soil as provided below.

Metals, Inorganics, and ORP Parameters in Soil

Nine (9) soil samples with one (1) duplicate sample were selected for chemical analysis for Metals, Inorganics and ORP parameters. The collected nine (9) samples and duplicate sample met Table 2 RPI CT soil standards for all parameters.

PCBs, pH, and PHCs (including BTEX) Parameters

Two (2) soil samples with one (1) duplicate sample were selected for chemical analysis for PCBs. Four (4) soil samples with one (1) duplicate sample were selected for chemical analysis for PHCs (including BTEX). Four (4) soil samples with one (1) duplicate sample were selected for chemical analysis for pH. All soil samples met Table 2 RPI CT soil standards.

The laboratory Certificates of Analysis are provided in Appendix F. The soil sample results are provided in Tables 4, 5, 6, and 7.

6.6.3 Contaminants of Concern

No Contaminants of Concern associated with the soil on the Property were identified.

6.6.4 Chemical or Biological Transformations

No Contaminant of Concern associated with the soil on the Property were identified.

6.6.5 Contamination Impact on Other Media

No Contaminants of Concern associated with the soil on the Property were identified

6.6.6 Presence of Light or Dense Non-Aqueous Phase Liquids

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected in the soil on the Property.

6.7 Groundwater Quality

Groundwater sampling was completed for three (3) monitoring wells on the Property. Groundwater samples were analyzed for PCBs, PHCs and VOCs (including BTEX). Also, one (1) duplicate sample was submitted for each parameter, and one (1) trip blank was submitted for VOCs. The location and depths of the sample submitted for chemical analysis are presented below:

6.7.1 Location and Depth of Samples

Groundwater Sampling Plan & Summary

	Analytical Groups											
Borehole		PAHs	PCBs	PHCs	VOCs	ВТЕХ	Duplicates					
	IVI&I	M&I PAHs	PCBS	PHCS			M&I	PAHs	PCBs	PHCs	VOCs	BTEX
9			✓	✓	✓	✓						
10			✓	✓	✓	✓						
13			✓	✓	✓	✓			✓	✓	✓	✓

Note: ✓- Meets MECP Table 2 RPI CT Standards

- X Exceeds MECP Table 2 RPI CT Standards
- Not sampled

6.7.2 Field Filtering

Field filtering was not conducted for ground water samples.

6.7.3 Comparison to Applicable Standards

The rationale for sampling location and frequency are presented in the Sampling and Analysis Plan in Appendix B. The laboratory Certificates of Analysis are provided in Appendix F. The results of groundwater chemical analysis are provided in Tables 8, 9, and 10. No exceedances of Table 2 RPI CT Standards for groundwater as provided below.

PCBs Parameters in Groundwater

Three (3) groundwater samples were selected from monitoring wells across the Property, with one (1) duplicate sample for chemical analysis for PCBs parameter. The four (4) samples met Table 2 RPI CT groundwater standards for the PCBs parameters.

PHCs Parameters in Groundwater

Three (3) groundwater samples were selected from monitoring wells across the Property, with one (1) duplicate sample for chemical analysis for PHCs parameter. The four (4) samples met Table 2 RPI CT groundwater standards for the PHCs parameters.

VOCs Parameters in Groundwater

Three (3) groundwater samples were selected from monitoring wells across the Property, with one (1) duplicate sample for chemical analysis for VOCs parameter. The four (4) samples met Table 2 RPI CT groundwater standards for the VOCs parameters.

The laboratory Certificates of Analysis are provided in Appendix F. The groundwater sample results are provided in Tables 8, 9, and 10.

6.7.4 Contaminants of Concern

No Contaminant of Concern associated with groundwater on the Property were identified.

6.7.5 Chemical or Biological Transformations

No Contaminant of Concern associated with the groundwater on the Property were identified.

6.7.6 Contamination Impact on Other Media

No Contaminant of Concern associated with the groundwater on the Property were identified.

6.7.7 Presence of Light or Dense Non-Aqueous Phase Liquids

No LNAPL or DNAPL was detected in the groundwater on the Property.

6.8 Sediment Quality

No surface water features were present on the property. Therefore, no sediment sampling was conducted as part of this investigation.

6.9 Quality Assurance and Quality Control Results

6.9.1 Types of Quality Control Samples Collected and Results

Soil and groundwater samples were handled per the Analytical Protocol concerning holding time, preservation method, storage requirement and sample container type. Laboratory results were compared to MECP standards for quality control under Ontario Regulation 153, which requires laboratory results to meet specific method detection limit (MDL) requirements. In general, the sampling and analyses performed conformed with the following:

- Ministry of the Environment Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.I of the Environmental Protection Act of Ontario.

Duplicate samples were submitted at a rate of 10% for both soil and groundwater samples.

6.9.2 Samples Not Handled in Accordance with the Analytical Methods

Holding Time

All samples met the holding times as specified in Ontario Ministry of the Environment, Conservation and Park – Laboratory Services Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011.

Preservation Method

All samples met the preservation methods as specified in Ontario Ministry of the Environment, Conservation and Park – Laboratory Service Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011.

Storage Requirement

All samples met the storage requirements as specified in Ontario Ministry of the Environment, Conservation and Park – Laboratory Service Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011.

Container Type

All samples met the container type as specified in the Ontario Ministry of the Environment, Conservation and Park – Laboratory Services Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011.

6.9.3 Subsection 47 (3) of the Regulation

All certificates of analysis or analytical reports received according to clause 47 (2) (b) of the regulation comply with subsection 47 (3). A certificate of analysis or analytical report has been received for each sample submitted for analysis. All certificates of analysis or analytical reports received have been included and are presented in Appendix F.

6.9.4 Results Qualified by Laboratory

The laboratory did not qualify any results or made any remarks in a certificate of analysis or analytical report about a sample.

6.9.5 Overall Quality of Field Data

Decision-making regarding the environmental condition of the Property was not affected by the overall quality of the field data. The overall quality of the field data was considered by the Qualified Person to meet the objectives of the investigation and assessment.

7.0 CONCLUSIONS

The conclusions arising from the Phase Two ESA are as follows:

- The subsurface investigation was conducted in conjunction with geotechnical and hydrogeological investigations at the Property. A total of nine (9) environmental boreholes were advanced on the Property to a depth of approximately 9.4 m below ground surface (mbgs). Six (6) of these boreholes were installed with monitoring wells (BH1, BH9, BH10, BH13, BH15, and BH16).
- Soil conditions encountered withing the borehole consisted primarily of a layer of surficial material, earth-fill, and native soils. The surficial materials layer was composed of top soil was encountered at all borehole locations and ranged approximately between 100 and 140 mm in thickness. The earth fill material extended to a depth of 0.3 to 0.8 mbgs. The earth-fill primarily consisted of clayey silt, with trace gravel, organics matter and sand, compact, brown, and moist. The earth-fill layer was underlain by the naive soil. The fill material appears to comprise of reworked disturbed/weathered native soils at the Property.
- Native soils were encountered beneath the fill material soil. Native soil consisted of a clayey silt layer comprised of some sand to sandy, trace gravel, very stiff to hard, brown to reddish brown, and moist. The native clayey silt layer extended to a depth of approximately 0.8 to 6.1 mbgs.
- Below approximately 6.1 mbgs, a layer of sandy silt to sand and silt layer was observed. This layer was comprised of trace to some clay, trace to some gravel, very dense, reddish brown, and moist. This layer extended to a depth of approximately 6.1 to 9.4 mbgs. Bedrock was not encountered within the depth of the investigation.
- A total of four (4) grain size analyses were conducted to confirm the on-site soil texture on the Property. According to the grain size analysis the soil at the Property is Medium-Fine and Coarse in texture. However, when comparing the environmental analysis results to Ontario soil guidelines, stricter standards for example, coarse-textured soil standards were used as a conservative measure.
- The results of the samples submitted for chemical analysis were compared to the full depth generic site condition standards in a potable groundwater condition as contained in Table 2 of the Ministry of Environment, Conservation and Parks (MECP) publication "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" for potable groundwater condition residential/parkland/institutional Property Use, April 15, 2011.
- Selected soil samples were submitted for chemical analysis for metals, including hydride-forming metals (As, Sb, Se, Cr), and selected ORPs, polychlorinated biphenyls (PCBs), petroleum hydrocarbon (PHC F1-F4), including benzene, toluene, ethylbenzene, xylene (BTEX).
 - All soil samples submitted for chemical analysis met the applicable site condition standards.
- Selected groundwater samples were submitted for analysis for metals, polychlorinated biphenyls (PCBs), petroleum hydrocarbons (PHCs F1-F4), and volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, xylene (BTEX).
 - All groundwater samples submitted for chemical analysis met the applicable site condition standards.

Based on the findings of Phase Two ESA, a Record of Site Condition (RSC) can be filed with the Ministry of the Environment, Conservation and Parks (MECP) as per O.Reg. 153/04, if required.

All wells installed during the subsurface soil and groundwater investigation are required to be decommissioned under O.Reg.903 when they are no longer needed for groundwater observation.

8.0 SIGNATURES

Asem Quadiri, B.Eng. (Environmental), EIT, has completed the Phase Two ESA under the direction and supervision of Muhammad I. Shahid P. Geo., QP_{ESA}. The findings and conclusions presented in this report have been determined based on the information that was obtained and reviewed, and on an assessment of the existing conditions on the property.

We trust this report meets your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

Terraprobe Inc.

Engineer-In-Training

Asem Quadiri, B.Eng. (Environmental), E.I.T.

Muhammad I. Shahid P. Geo., QP_{ESA} Senior Project Manager

Brampton Office

9.0 REFERENCES

- 1. Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- 2. Chapman, L.J., and Putnam, D.F., 2007. *The Physiography of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 228.
- 3. Gao, C., Shirota, J., Kelly, R. I., Brunton, F.R., van Haaften, S. 2006. Bedrock topography and overburden thickness mapping, southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 207.
- 4. Ontario Geological Survey of 2010. *Surficial Geology of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 128-REV. ISBN 978-1-4435-2483-7
- 5. Ontario Geological Survey of 2006. *Bedrock Topography and Overburden Thickness Mapping, Southern Ontario*. Ontario Geological Survey, Miscellaneous Release—Data 207.
- 6. Ontario Ministry of the Environment, January 1993. *Ontario Inventory of PCB Storage Sites*. ISBN 0-7778-0836-6.
- 7. Ontario Ministry of the Environment, June 1991. *Waste Disposal Site Inventory*. ISBN 0-7729-8409-3.
- 8. Terraprobe, Inc., Phase One Environmental Site Assessment, 6360 Regional Road 25, Town of Milton, ON. December 8, 2022. File No. 1-22-0209-41.

10.0 LIMITATIONS

This report was prepared for the exclusive use of **Thomas Robert Colbeck** and is intended to provide an assessment of the environmental conditions on the subject property, located at **6360 Regional Road 25**, **Town of Milton, Ontario**. The report was prepared for identifying potential environmental concerns, including an assessment of the likelihood that the environmental quality of the soil and groundwater at the site may have been adversely affected by past and present practices at the site, and/or those of the surrounding properties before the re-development of the property. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Terraprobe accepts no responsibility for damages, if any, suffered by any third party because of decisions made or actions based on this report, including consequential financial effects on transactions or property values or requirements for follow-up actions and costs.

The assessment should not be considered a comprehensive audit that eliminates all risks of encountering environmental problems. The information presented in this report is based on information collected during the completion of the investigation conducted by Terraprobe Inc. It is based on conditions at the subject property at the time of the site inspection. The subsurface conditions were assessed based on information collected at specific borehole and monitoring well locations. The actual subsurface conditions between the sampling points may vary.

There is no warranty expressed or implied by this report regarding the environmental status of the subject property. Professional judgment was exercised in gathering and analyzing information collected by our staff, as well as that submitted by others. The conclusions presented are the product of professional care and competence and cannot be construed as a guarantee.

If during future work new information regarding the environmental condition of the subject property is encountered, or if the outstanding responses from the regulatory agencies indicate outstanding issues on file concerning the subject property, Terraprobe should be notified so that we may re-evaluate the findings of this assessment and provide amendments, as required.

TABLES

TABLE 1
GEOLOGICAL UNITS
6360 Regional Road 25, Town of Milton
PROJECT NUMBER: 1-22-0209-42

	BH1			ВН3			ВН6				ВН9		BH10		
Borehole	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)
Asphaltic Concrete & Aggregate	No	t Encounte	ered Not Encountered												
Topsoil	192.0	191.9	0.1	192.5	192.1	0.4	192.7	192.6	0.1	192.5	192.3	0.2	192.9	192.8	0.1
Fill	191.9	191.2	0.7	192.1	191.7	0.4	192.6	191.9	0.7	192.3	191.7	0.6	192.8	192.1	0.7
Clayey Silt	191.2	187.4	3.8	191.7	186.4	5.3	191.9	188.1	3.8	191.7	189.5	2.2	192.1	186.8	5.3
Sandy Silt to Sand and Silt	187.4	182.7	4.7	186.4	183.3	3.1	188.1	183.3	4.8	189.5	183.3	6.2	186.8	183.6	3.2

	BH11			BH13			BH15			BH16		
Borehole	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)
Asphaltic Concrete & Aggregate	Not Encountered			Not Encountered			Not Encountered			Not Encountered		
Topsoil	192.5	192.4	0.1	192.4	192.3	0.1	192.2	192.1	0.1	192.2	192.1	0.1
Fill	192.4	191.7	0.7	192.3	191.6	0.7	192.1	191.4	0.7	192.1	191.4	0.7
Clayey Silt	191.7	187.9	3.8	191.6	189.4	2.2	191.4	186.1	5.3	191.4	186.1	5.3
Sandy Silt to Sand and Silt	187.9	183.2	4.7	189.4	183.1	6.3	186.1	182.9	3.2	186.1	183	3.1

TABLE 2
MONITORING WELL CONSTRUCTION
6360 Regional Road 25, Town of Milton
PROJECT NUMBER: 1-22-0209-42

Well ID	BH1		ВН9		B	H10	BH13		BH15		BH16	
Stick Up (m)	1.00		1.30		0.90		0.90		1.00		0.87	
Ground Elev. (masl)	192.0		192.5		192.9		192.4		192.2		192.2	
Well Component	Depth (m)	Elev. (masl)										
Bentonite - Top	0.0	192.0	0.0	192.5	0.0	192.9	0.0	192.4	0.0	192.2	0.0	192.2
Bentonite - Bottom	5.5	186.5	5.5	187.0	5.4	187.5	5.4	187.0	5.5	186.7	5.5	186.7
Sand - Top	5.5	186.5	5.5	187.0	5.4	187.5	5.4	187.0	5.5	186.7	5.5	186.7
Screen - Top	6.0	186.0	6.0	186.5	5.9	187.0	5.9	186.5	6.0	186.2	6.0	186.2
Screen - Bottom	9.1	182.9	9.1	183.4	9.1	183.8	9.1	183.3	9.1	183.1	9.1	183.1
Sand - Bottom	9.3	182.7	9.2	183.3	9.3	183.6	9.3	183.1	9.3	182.9	9.2	183.0

TABLE 3
GROUNDWATER LEVELS
6360 Regional Road 25, Town of Milton
PROJECT NUMBER: 1-22-0209-42

Well ID		BH1		ВН9		BH10		BH13		BH15		BH16				
Stick Up (m)		1.00		1.30		0.90		0.90		1.00		0.87				
Ground Elev. (masl)		192.0	192.5		192.9		192.4		192.4		192.9 192.4		192.4 192.2			192.2
Depth (mbgs)		9.30		9.20		9.30		9.30		9.30		9.20				
Top of Screen (mbgs / masl)	6.0	186.0	6.0	186.5	5.9	187.0	5.9	186.5	6.0	186.2	6.0	186.2				
Bottom of Screen (mbgs / masl)	9.1	182.9	9.1	183.4	9.1	183.8	9.1	183.3	9.1	183.1	9.1	183.1				
Date	WL (m)	Elev. (masl)	WL (m)	Elev. (masl)												
11-Jul-22	6.6	185.4	6.5	186.0	8.0	184.9	6.7	185.7	7.0	185.2	7.1	185.1				
14-Jul-22	6.7	185.3	6.9	185.6	7.1	185.8	6.8	185.6	7.1	185.1	7.3	184.9				

TABLE 4 SOIL QUALITY - pH

O. Reg. 153(511): Table 2 RPI Coarse Grain Textured Soil

6360 Regional Road 25, Milton, Ontario

PROJECT NUMBER: 1-22-0209-42

	Sample Description	BH3-SS5	BH6-SS6	BH10-SS5	Dup3	BH15-SS4		
	Date Sampled		06/17/2022	06/14/2022	06/16/2022	06/16/2022	06/16/2022	
	Sample Depth (mbg	3.1-3.6	4.5-5.2	3.1-	-3.6	2.3-2.9		
	Sample Elevation (m	asl)		189.4-188.9	188.2-187.5	189.8-189.3		189.9-189.3
	AGAT Workorder			22T912757	22T912757	22T912757	22T912757	22T912757
Parameter Name	ON T2 S RPI CT	Unit	*	4020312 🔻	4020314 🔻	4020321 🔻	4020326 🔻	4020330 🔻
pH, 2:1 CaCl2 Extraction	5.0-9.0		pH Units	7.19	7.42	7.35	7.34	7.47

TABLE 5
SOIL QUALITY - Metals, Inorganics & ORPs
O. Reg. 153(511): Table 2 RPI Coarse Grain Textured Soil
6360 Regional Road 25, Milton, Ontario
PROJECT NUMBER: 1-22-0209-42

Sample Descr	ription	BH1-SS1	BH3-SS1	BH6-SS1	BH9-SS1	BH10-SS1	BH11-SS1	Dup1	BH13-SS1	BH15-SS1	BH16-SS1
Date Samp	led	06/14/2022	06/17/2022	06/14/2022	06/15/2022	06/16/2022	06/15/2022	06/15/2022	06/16/2022	06/16/2022	06/15/2022
Sample Depth	(mbgs)	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6	0-0	.6	0-0.6	0-0.6	0-0.6
Sample Elevation	on (masl)	192.0-191.4	192.5-191.9	192.7-192.1	192.5-191.9	192.9-192.3	192.5-	191.9	192.4-191.8	192.2-191.6	192.2-191.6
AGAT Works	order	22T912757	22T912757	22T912757	22T912757	22T912757	22T912757	22T912757	22T912757	22T912757	22T912757
Parameter Name	ON T2 S RPI CT Unit	4020309	4020311	4020313	4020315 🔻	4020318	4020322 🔻	4020328 🔻	4020323	4020325	4020327
Antimony	7.5 µg/g	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	18 μg/g	8	8	7	7	7	6	7	7	9	7
Barium	390 μg/g	193	148	197	134	99	103	149	135	185	182
Beryllium	4 μg/g	0.8	1.1	1.2	1	0.8	0.8	1.1	1.1	1.6	1.4
Boron	120 µg/g	17	21	13	13	11	9	14	14	18	18
Boron (Hot Water Soluble)	1.5 μg/g	<0.10	0.15	0.34	<0.10	0.22	0.1	0.12	0.12	<0.10	<0.10
Cadmium	1.2 μg/g	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	160 μg/g	27	33	39	30	27	27	34	39	41	46
Chromium, Hexavalent	8 μg/g	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	22 μg/g	15.4	16.7	16.4	16.3	13.5	13.8	14.1	17.3	17.7	16.1
Copper	140 μg/g	35.2	30	23.8	33.2	30.2	27.8	29.8	28.1	36.4	26.4
Cyanide, Free	0.051 μg/g	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Lead	120 μg/g	12	13	17	13	13	12	14	14	16	16
Mercury	0.27 μg/g	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Molybdenum	6.9 μg/g	<0.5	0.7	<0.5	0.5	0.5	<0.5	<0.5	<0.5	0.5	<0.5
Nickel	100 μg/g	33	37	33	34	28	31	32	30	36	37
Selenium	2.4 μg/g	<0.8	<0.8	0.8	0.8	1	<0.8	1	0.9	1	0.8
Silver	20 μg/g	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	1 μg/g	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	23 µg/g	0.71	0.65	0.77	0.64	0.59	0.66	0.75	0.74	0.85	0.87
Vanadium	86 µg/g	37.6	46.3	55.4	41.1	39.4	37.3	49.4	52.4	57.2	61.4
Zinc	340 µg/g	69	76	92	80	75	67	85	87	90	89
pH, 2:1 CaCl2 Extraction	5.0-9.0 pH Units	6.88	6.68	6.88	7.36	7.26	6.8	7.29		7.33	6.66
Electrical Conductivity (2:1)	0.7 mS/cm	0.233	0.185	0.163	0.21	0.182	0.26	0.189	0.263	0.235	0.098
Sodium Adsorption Ratio (2:1) (Calc.)	5 N/A	1.9	0.351	0.343	0.712	0.137	1.59	0.539	1.43	0.654	0.388

TABLE 6 SOIL QUALITY - PCBs

O. Reg. 153(511): Table 2 RPI Coarse Grain Textured Soil

6360 Regional Road 25, Milton, Ontario

PROJECT NUMBER: 1-22-0209-42

	Sample Descriptio	n		BH9-SS7	BH13-SS8	Dup4			
	06/15/2022	06/16/2022	06/16/2022						
	Sample Depth (mbgs)								
	Sample Elevation (m	asl)		186.4-185.8	184.8-184.2				
	AGAT Workorder	•		22T912757	22T912757	22T912757			
Parameter Name	4020317 🔻	4020324 🔻	4020331 🔻						
Polychlorinated Biphenyls	0.35	μg/g		<0.1	<0.1	<0.1			

TABLE 7
SOIL QUALITY - PHCs
O. Reg. 153(511): Table 2 RPI Coarse Grain Textured Soil
6360 Regional Road 25, Milton, Ontario

PROJECT NUMBER: 1-22-0209-42

	Sample Des	cription			BH9-SS5	6	BH10-SS2	?	BH10-SS	6	BH13-SS8	Dup2
	Date San	npled			06/15/202	22	06/16/2022		06/16/202	22	06/16/2022	06/16/2022
	3.1-3.6	5	1.5-2.1		4.5-5.2		7.6	-8.2				
S	189.4-188	188.9 191.4-190.8		188.4-187	7.7	184.8	-184.2					
AGAT Workorder							22T912757		22T912757	7	22T912757	22T912757
Parameter Name	~	ON T2 S RPI CT	√Un	it 🔻	4020316	~	4020319	4	4020320	₩	4020324 🔻	4020329 🔻
F1 (C6 - C10)		5	5 μg/	′g		<5		<5		<5	<5	<5
F2 (C10 to C16)		g	8 μg/	′g		<10	<	10	<	<10	<10	<10
F3 (C16 to C34)		30	00 μg/	′g		<50	<	50	<	<50	<50	<50
F4 (C34 to C50)		280	00 μg/	/g		<50	<	50	<	<50	<50	<50
Benzene		0.2	.1 μg/	′g	<0	.02	<0.	02	<0	.02	<0.02	<0.02
Ethylbenzene		1.	1 μg/	/g	<0	.05	<0.	05	<0	.05	<0.05	<0.05
Toluene		2.	3 μg/	′g	<0	.05	<0.	05	<0	.05	<0.05	0.06
Xylenes (Total)		3.	1 μg/	′g	<0	.05	<0.	05	<0	.05	<0.05	<0.05

TABLE 8
GW QUALITY - PHCs F1-F4 (with VOCs)
O. Reg. 153(511): Table 2 RPI Corse Textured Soil

6360 Regional Road, Milton, Ontario PROJECT NUMBER : 1-22-0209-42

	Sample Descrip	otion		BH 09	BH 10	BH 13	DUP-1
	Date Sample	ed		07/15/2022	07/15/2022	07/15/2022	07/15/2022
	Screen Depth (n	nbgs)		6.0-9.0	6-9	6-	-9
	Screen Elevation	186.5-183.5	186.9-183.9	186.4-	-183.4		
	22T921255	22T921255	22T921255	22T921255			
Parameter Name 🔻	ON T2 NPGW CT	Unit	~	~	~	₩	~
F1 (C6 - C10)	750	μg/L		<25	<25	<25	<25
F2 (C10 to C16)	150	μg/L		<100	<100	<100	<100
F3 (C16 to C34)	500	μg/L		<100	<100	<100	<100
F4 (C34 to C50)	500	μg/L		<100	<100	<100	<100

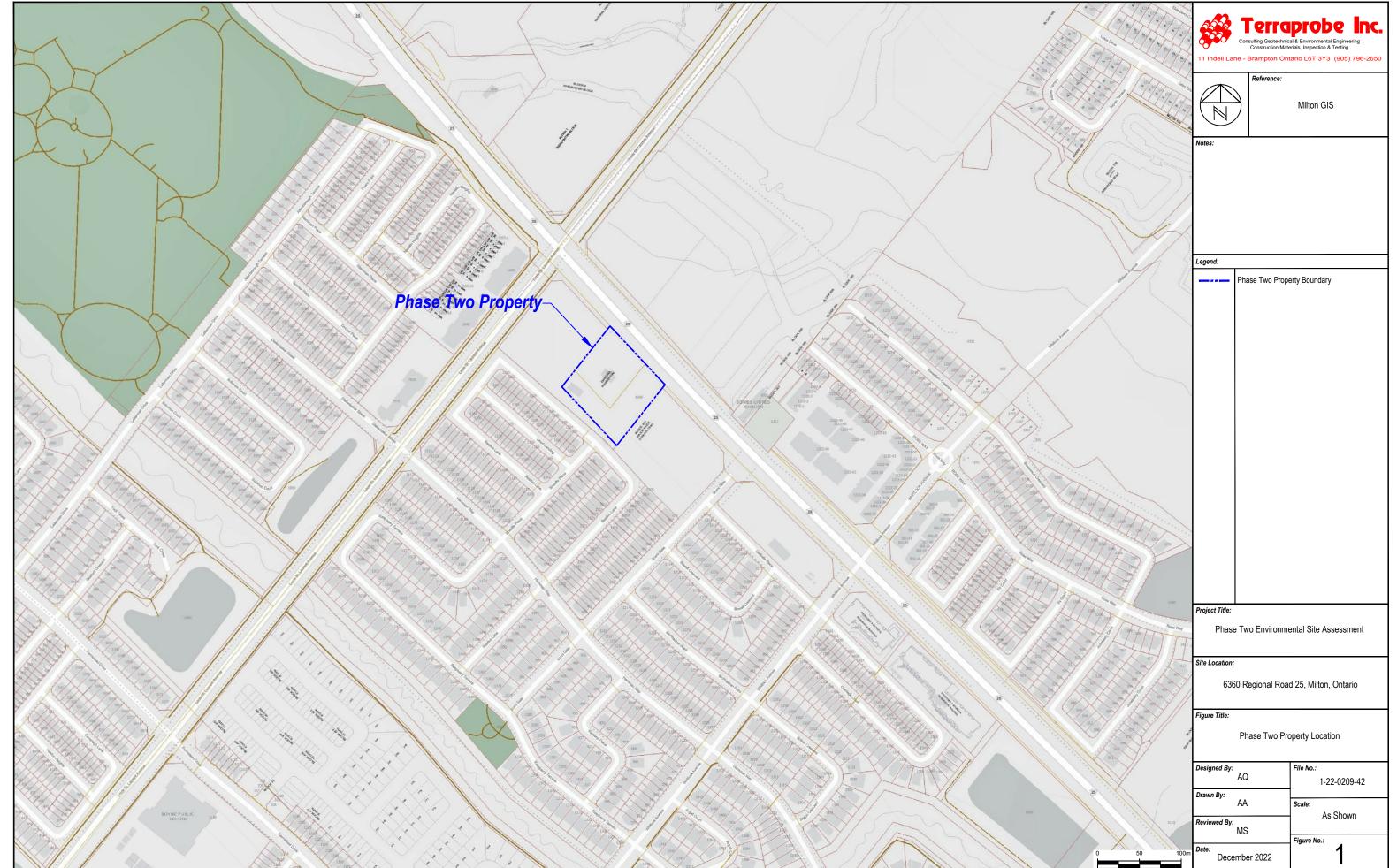
TABLE 9
GW QUALITY - PCBs (Water)

O. Reg. 153(511): Table 2 RPI Coarse Textured Soil

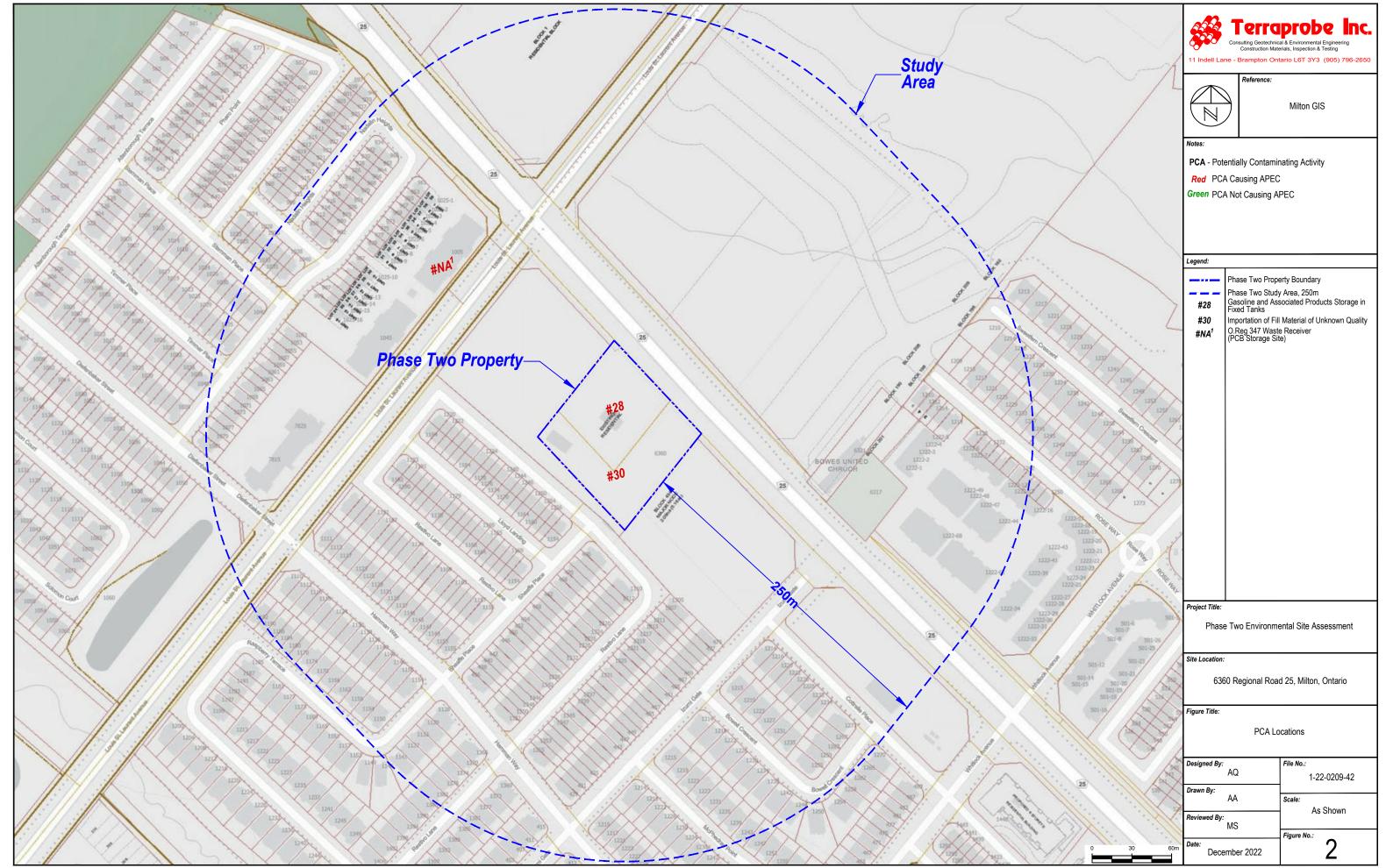
6360 Regional Road, Milton, Ontario PROJECT NUMBER : 1-22-0209-42

Sample Description	BH 09	BH 13	DUP-1	
Date Sampled	07/15/2022	07/15/2022	07/15/2022	
Screen Depth (mbgs)	6.0-9.0	6-9		
Screen Elevation (masl)	186.5-183.5	186.4-183.4		
AGAT Workorder	22T921255	22T921255	22T921255	
Parameter Name ON T2 NPGW CT Unit	4100794	4100801 🔻	4100802 🔻	
Polychlorinates Biphenyls 3 μg/L	<0.1	<0.1	<0.1	

TABLE 10
GW QUALITY - VOCs (With PHCs)
O. Reg. 153(511): Table 2 RPI Course Textured Soil
6360 Regional Road, Milton, Ontario


PROJECT NUMBER : 1-22-0209-42

Sa	ample Description		BH 09	BH 10	BH 13	DUP-1
	Date Sampled		07/15/2022	07/15/2022	07/15	5/2022
	reen Depth (mbgs)		6.0-9.0	6-9	6	i-9
Scre	een Elevation (masl)		186.5-183.5	186.9-183.9	186.4	-183.4
	AGAT Workorder		22T921255	22T921255	22T921255	22T921255
Parameter Name	ON T2 NPGW MFT	Unit	4100794	4100800 🔻	4100801	4100802
1,1,1,2-Tetrachloroethane	1.1	μg/L	<0.10	<0.10	<0.10	<0.10
1,1,1-Trichloroethane	200	μg/L	<0.30	<0.30	<0.30	<0.30
1,1,2,2-Tetrachloroethane	1	μg/L	<0.10	<0.10	<0.10	<0.10
1,1,2-Trichloroethane	4.7	μg/L	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	5	μg/L	<0.30	<0.30	<0.30	<0.30
1,1-Dichloroethylene	1.6	μg/L	<0.30	<0.30	<0.30	<0.30
1,2-Dichlorobenzene	3	μg/L	<0.10	<0.10	<0.10	<0.10
1,2-Dichloroethane	1.6	μg/L	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	5	μg/L	<0.20	<0.20	<0.20	<0.20
1,3-Dichlorobenzene	59	μg/L	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	0.5	μg/L	<0.30	<0.30	<0.30	<0.30
1,4-Dichlorobenzene	1	μg/L	<0.10	<0.10	<0.10	<0.10
Acetone	2700	μg/L	<1.0	<1.0	<1.0	<1.0
Benzene	5.0	μg/L	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	16	μg/L	<0.20	<0.20	<0.20	<0.20
Bromoform	25	μg/L	<0.10	<0.10	<0.10	<0.10
Bromomethane		μg/L	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	0.79	μg/L	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	μg/L	<0.10	<0.10	<0.10	<0.10
Chloroform		μg/L	<0.20	<0.20	<0.20	<0.20
cis- 1,2-Dichloroethylene	1.6	μg/L	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane		μg/L	<0.10	<0.10	<0.10	<0.10
Dichlorodifluoromethane		μg/L	<0.40	<0.40	<0.40	<0.40
Ethylbenzene		μg/L	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide		μg/L	<0.10	<0.10	<0.10	<0.10
Methyl Ethyl Ketone	1800	μg/L	<1.0	<1.0	<1.0	<1.0
Methyl Isobutyl Ketone		μg/L	<1.0	<1.0	<1.0	<1.0
Methyl tert-butyl ether		μg/L	<0.20	<0.20	<0.20	<0.20
Methylene Chloride		μg/L	<0.30	<0.30	<0.30	<0.30
n-Hexane		μg/L	<0.20	<0.20	<0.20	<0.20
Styrene		μg/L	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene		μg/L	<0.20	<0.20	<0.20	<0.20
Toluene		μg/L	<0.20	<0.20	<0.20	<0.20
trans- 1,2-Dichloroethylene		μg/L	<0.20	<0.20	<0.20	<0.20


FIGURES

TERRAPROBE INC.

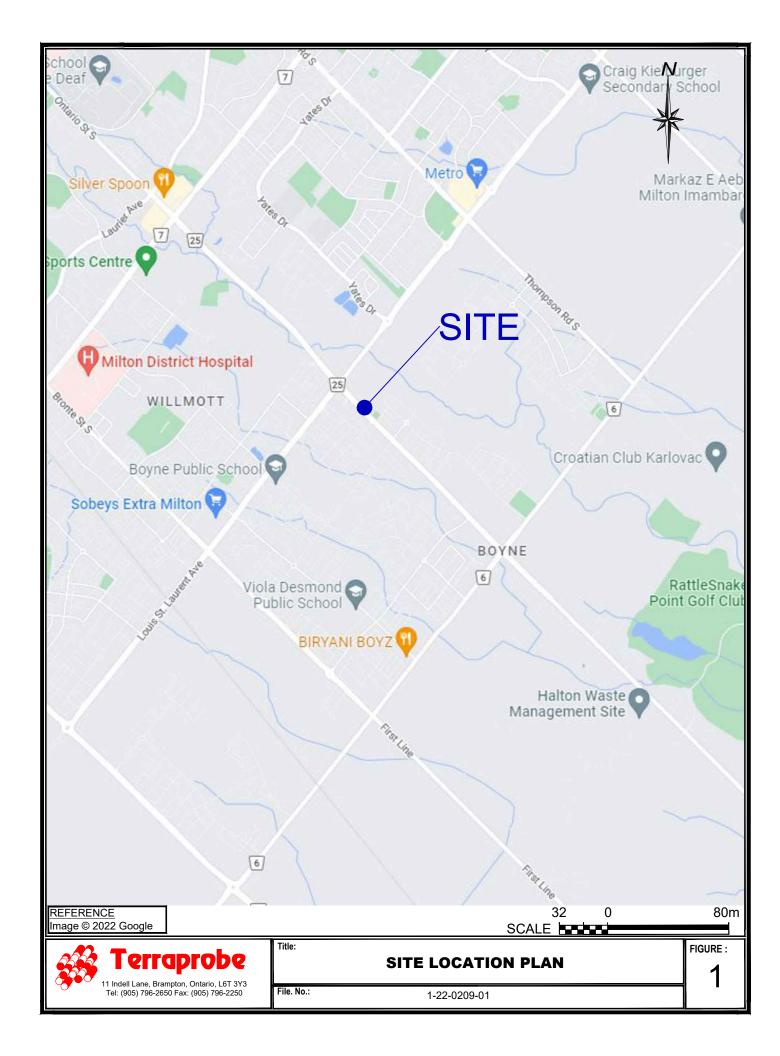
Shared/CAT erraprobe/Brampton/14-Project Files/2022/1-22-0209 - 6360 Regional Road 25/42-Phase Two ESA/A. Dwgs, Logs/AutoCAD/1-22-0209-42.dwg, aalashaab, _DWG To

regional erapionelbrampioni i-rioject rijestuzzi, -zz-uzuu - osou regional koad zowz-rhase i wo Esawi. Dwgs, Logskaudoladi i-zz-uzuu-az-uzuwg, aaashaab, _Dwg-i o

shared(CA)Teraprobe(Brampton/L-Project Flee)2023/1-22-0209 - 6360 Regional Road 254/2-Phase Two ESAA. Dwgs. Logs/AutoCAD/1-22-0209-42, dwg. aalashaab._DWG To

red/CA/Terraprobe/Brampton/1-Project Files/2022/1-22-0209 - 6360 Regional Road 25/42-Phase Two ESA/A. Dwgs. Logs/AutoCAD/1-22-0209-42-dwg. aalashaab._DWG To PDF

Shared/CA/Terraprobe/Brampton1+Project Fles/2022/1-22-0209 - 6380 Regional Road 25/42-Phase Two ESAA. Dwgs, Logs/AutoCAD/1-22-0209-42 dwg, aalashaab, _DWG To PDF


	Consulting Geotechni Construction Ma	IPTODE INC ical & Environmental Engineering terials, Inspection & Testing
11 Indell La	ine - Brampton Or	ntario L6T 3Y3 (905) 796-26
	Reference:	
Notes:		
Legend:		
	Phase Two Prop Fill Clayey Silt	perty Boundary
	Sandy Silt to Sa	nd and Silt
¥	Monitoring Well Groundwater Le	Screen evel (masl), July 14, 2022
	· '	s MECP Table 3 Standards
	Sample Meets M Approximate Ex	MECP Table 3 Standards tent of Impact
Project Title: Phas	e Two Environm	nental Site Assessment
Site Location		ad 25, Milton, Ontario
Figure Title:	Cross Se	ection A-A'
Designed By:	AQ	File No.: 1-22-0209-42
Drawn By:	AA	Scale:
Reviewed By	MS	Figure No.:
Date:	amher 2022	1 ''yun 110

AlTerraprobelBrampton/1-Project Files/2022/1-22-0209 - 6360 Regional Road 25/42-Phase Two ESAA. Dwgs. Logs/AutoCAD/1-22-0209-42 dwg, aalashaab. _DWG To Pr

APPENDIX A

TERRAPROBE INC.

5 DD9 B8 ± 6

TERRAPROBE INC.

Soil Sampling Plan & Summary

						Ar	nalytic	al Gro	ups				
8	Sample	N40 I	FC / CAD	DCD-		DUICA	DTCV		1	Duplic	ates		
		IVI&I	EC / SAR	PCBS	рн	PHCS	BIEX	M&I	EC /SAR	PCBs	рН	PHCs	BTEX
1	SS1	✓	✓										
2	SS1	✓	✓										i
3	SS5				✓								
6	SS1	✓	✓										
0	SS6				✓								
	SS1	✓	✓										1
9	SS5					✓	✓						1
	SS7			✓									1
	SS1	✓	✓										i
10	SS2					✓	✓						i
10	SS5				✓						✓		i
	SS6					✓	✓						
11	SS1	✓	✓					✓	✓				i
13	SS1	✓	✓										i
15	SS8			✓		✓	✓			✓		✓	\
15	SS1	✓	✓										
13	SS4				✓								
16	SS1	✓	✓										

Groundwater Sampling Plan & Summary

						Analytica	al Groups						
Borehole	M&I	PAHs	PCBs	PHCs	VOCs	BTEX	Duplicates						
	IVIQI	РАПЗ	PCBS	PHCS	VOCS	DIEX	M&I	PAHs	PCBs	PHCs	VOCs	BTEX	
9			✓	✓	✓	✓							
10			✓	✓	✓	✓							
13			✓	✓	✓	✓			✓	✓	✓	✓	

APPENDIX C

SUMMARY OF FIELD INVESTIGATION PROTOCOL

1. Drilling and Soil Sampling Procedures

Drilling and sampling of overburden materials are generally conducted using a mobile power auger. During augering operations, soil samples are recovered using a standard 50 mm diameter split-spoon sampling device. The sampler is generally advanced by a drop hammer to obtain standard penetration values (N values) for assessment of soil consistency.

In some instances, soil samples are obtained by directly pushing a sampling device into the soil using specialized drilling equipment.

Soil samples obtained from the split-spoon are examined in the field by qualified engineering staff. The soil is classified according to: grain size distribution, texture, colour, odour, moisture content, and other pertinent details. Field borehole logs are prepared and notes are made regarding visual or olfactory evidence of potential contamination of soil materials.

Following logging, all samples are placed into laboratory-cleaned 500 mL glass jars, with foil-lined lids. The samples are transported to Terraprobe's laboratory for detailed inspection by the site engineer. Where samples are collected for analysis of volatile organic compounds, they are placed into laboratory-cleaned, 50 mL glass septum jars with Teflon-lined caps. Following review by the project engineer, samples are forwarded to a CAEAL-certified laboratory for analysis.

During the drilling procedure, no lubricants are used on any of the drilling and sampling equipment in order to ensure there is no contamination with hydrocarbon-based or other lubricating materials.

If significant contamination of the soil or ground water is expected, then drill cuttings are placed into 205 L steel drums stored on thesite. The drill cuttings and water are later characterized for proper off-site disposal, where necessary.

The sample collection and preservation techniques follow the general requirements of *Table 5.2(d)*, *Required Container Preservation Techniques and Maximum Handling Times for Water Samples*, and from *MOE Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* (May 1996).

Chain of custody forms are filled out for all samples which are shipped to commercial laboratories. The chain of custody forms are provided by the laboratory and include the following information:

- 1. Terraprobe's project number
- 2. Sample number and locations
- 3. Name of party shipping the samples to the laboratory
- 4. Required scope of analysis
- 5. Date of submission
- 6. Date of receipt by the laboratory
- 7. Any special notes or items of clarification appropriate to the project

2. Test Pit Excavation and Sampling

Test pits are generally excavated using a hydraulic backhoe of appropriate size and capacity depending on test pit depth and soil consistency. The test pit operations are carried out under the full-time supervision of Terraprobe engineering staff. During excavation, the test pits are logged based on the exposed soil and ground water profile. Soil samples are generally recovered from each soil strata noted during the investigation. Depending on the depth of the test pit, samples are obtained either by a spade or shovel from the side wall, or directly from the backhoe bucket.

In all cases, operations are carried out in strict accordance with the requirements of the Occupational Health and Safety Act. Personnel are not permitted to enter unsupported test pits with depths in excess of 1.2 m below prevailing grade.

3. Equipment Clean-up

All drilling equipment is cleaned by the contractor prior to beginning each project. This includes augers, drill rods, sampling spoons, and the like.

In the event that significant contamination is expected or noted during drilling, then the drilling equipment is also cleaned between each borehole location. The cleaning is conducted using high pressure washing equipment and a phosphate detergent. A decontamination pad or cleaning area is set up well away from the general work area.

All sampling equipment used during the investigation is cleaned between collection of each sample. This includes split-spoon equipment, shovels, trowels, and any other sampling equipment. Sampling equipment is cleaned as follows:

- All sampling equipment is wiped to remove excess soil material.
- Equipment is rinsed in municipal water.
- Equipment is further rinsed with distilled water.
- In the event of significant organic contamination (such as hydrocarbons), the material is rinsed with detergent and/or methanol to remove materials.
- A final rinse with distilled water is carried out prior to utilizing the sampling equipment.

4. Soil Gas Monitoring

Soil gas monitoring is conducted to assess the potential presence of volatile organic compounds in soil materials. The monitoring is conducted by obtaining headspace measurements from soil samples. Headspace measurement is conducted by placing the tip of a photo-ionization detector or flame ionization detector through an aluminum foil cover placed over the 500 mL sample jars. Alternatively, samples may be placed into polyethylene sampling bags and vapour analysis can be conducted through the wall of the sampling bag.

When the ambient air temperature is less than 10°C, samples are generally transported to Terraprobe's laboratory and allowed to remain in sealed containers until reaching room temperature. Vapour analysis is then conducted at room temperature.

All testing equipment is calibrated each day prior to conducting soil vapour measurements. Measurements are generally taken with respect to equivalent hexane concentration (concentration of parts per million), or in relation to the lower explosive limit of hexane. Where appropriate, the results are converted to represent concentrations of other gases such as methane.

The results of vapour monitoring are generally utilized to provide guidance for the selection of samples for later chemical analysis. They may also be used in assessing the presence of volatile organic compounds for the siting of monitoring wells.

5. Monitoring Well Installation

Monitoring wells are generally constructed using new, pre-packaged 50 mm diameter Schedule 40 PVC pipe and screens. The screen length and opening are dependent on the project requirements.

All wells are constructed using threaded joints without glues or solvents.

A silica sand pack is placed around the well screen and typically to a height of approximately 500 mm above the top of the well screen. A well seal, consisting of bentonite clay or cementitious bentonite grout, is then placed to a thickness of at least 1 m above the sand zone. The remainder of the hole is then filled to surface with an appropriate grout material or drill cuttings.

A locking security cap is fitted in areas which may be subject to vandalism or tampering of the well installation.

Specialized drilling procedures and monitoring well installation procedures are used where aquifer zones may be penetrated. All drilling is conducted in accordance with the general requirements of Regulation 903 to ensure that there is no cross-contamination or cross flow between aquifer zones.

6. Ground Water Sampling and Water Level Measurement

Water level measurements are conducted using an electronic water level finder. The water level finder is cleaned with distilled water, detergent, and where appropriate, methanol, prior to insertion into each well.

Measurements of non-aqueous phase liquids are conducted using specialized monitoring equipment which detects the presence of both the water column and non-aqueous phase liquids.

All measurements in the field are taken relative to a fixed point, which is generally the top of the well casing or top of the well protective cap. These are later referenced to appropriate elevations or ground surface.

Ground water sampling is conducted following proper development of the well. Wells are generally developed using a dedicated Waterra inertial pump. The wells are developed by removing a minimum of three casing volumes of water, or by bailing to dryness. Where possible, the wells are developed until clear, sediment-free water is obtained.

Ground water samples are obtained only following well bailing and development, as noted above. Samples are obtained either from a dedicated inertial pump, or a dedicated bailer.

During sampling, measurements are made for selected parameters including pH, conductivity, and temperature.

Samples are collected directly into laboratory-supplied containers. Samples collected for analysis of metals are filtered through a 0.45 micron disposable filter to eliminate suspended solids.

Sample bottles are stored in an insulated cooler to protect from freezing, and to maintain temperatures of less than 10°C.

The sample collection and preservation techniques follow the general requirements of *Table 5.2(d)*, *Required Container Preservation Techniques and Maximum Handling Times for Water Samples*, and from *MOE Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* (May 1996).

Chain of custody forms are filled out for all samples which are shipped to commercial laboratories. The chain of custody forms are provided by the laboratory and include the following information:

- Terraprobe's project number
- Sample number and locations
- Name of party shipping the samples to the laboratory
- Required scope of analysis
- Date of submission
- Date of receipt by the laboratory
- Any special notes or items of clarification appropriate to the project

7. Sample Quality Assurance and Quality Control

All chemical analysis of soil and ground water samples is carried out only by CAEAL certified laboratories. These laboratories provide internal quality control checks regarding laboratory analytical procedures. This includes the use of sample spikes, surrogate samples, and duplicate analysis.

For each sampling program, one trip blank is included. The trip blank consists of deionized water that is placed in the sample containers provided by the laboratory, and is prepared by the laboratory.

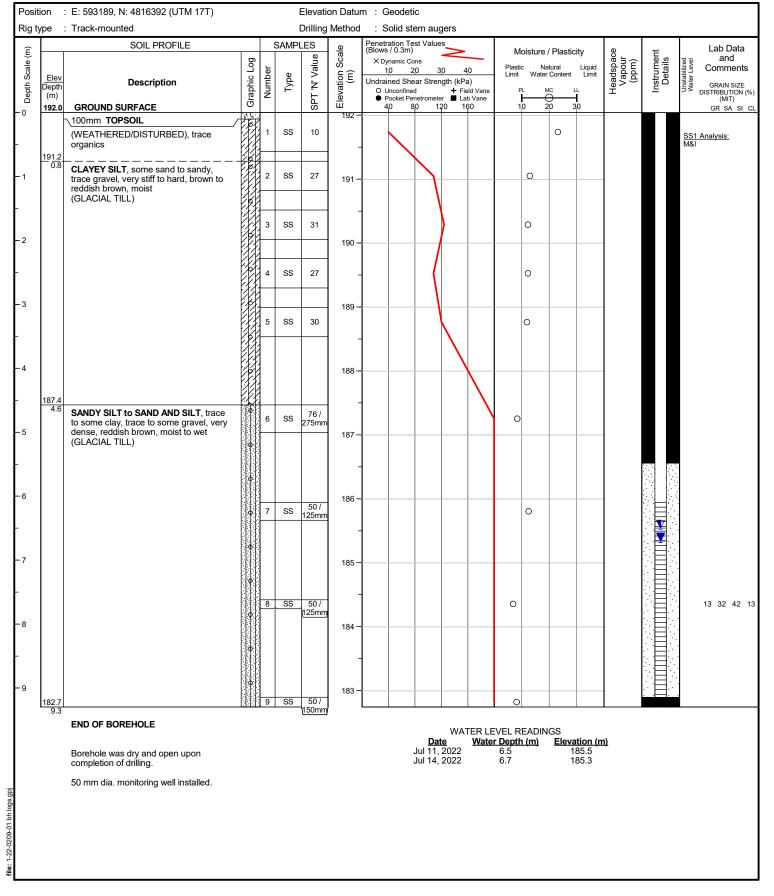
Field duplicate samples are prepared at the rate of approximately one sample per ten soil or ground water samples submitted. The number of duplicate samples depends on site and project-specific requirements. Duplicate samples are provided with a fictitious sample number in order that the laboratory is not aware of the duplicate sample.

A field blank sample is obtained at the rate of approximately one sample per ten ground water samples submitted. A field blank is obtained by filling the appropriate laboratory containers with the deionized water in the field during the sampling procedure.

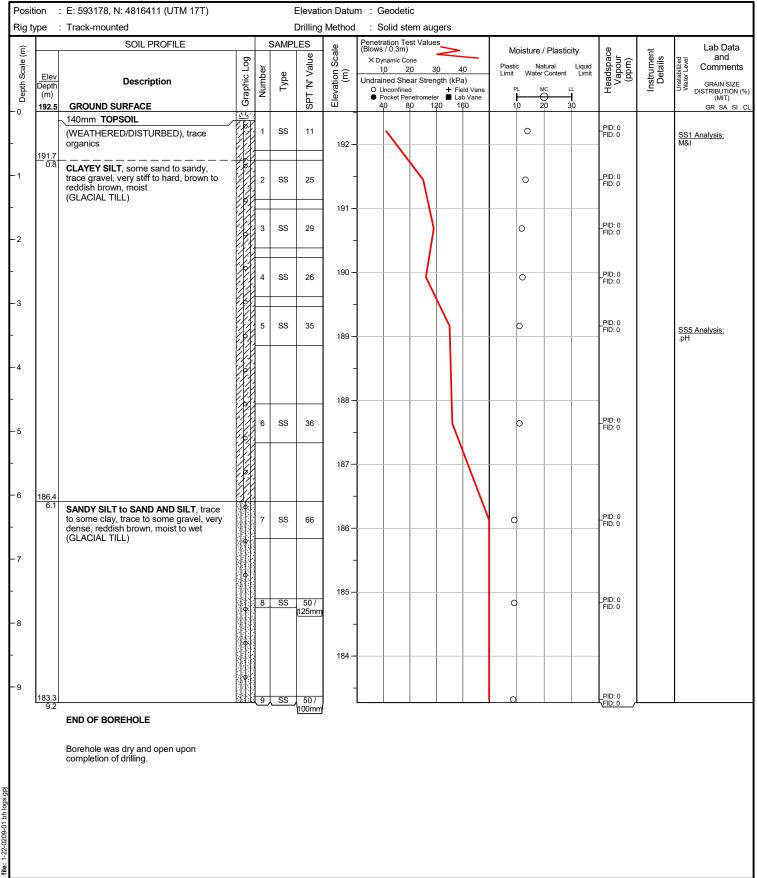
The results of all laboratory analysis are carefully examined and compared to the results of visual, olfactory, and soil vapour monitoring conducted in the field. Any unusual results or unexpected results are discussed carefully with the field technician and the laboratory. Where appropriate, resampling is conducted to ensure the veracity of all results.

.

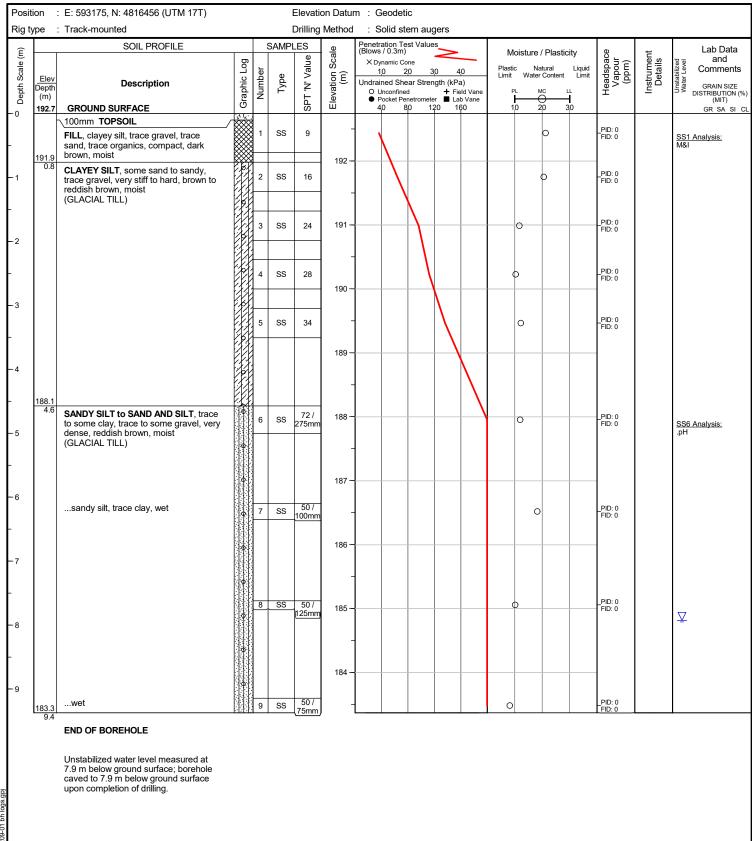
APPENDIX D


TERRAPROBE INC.

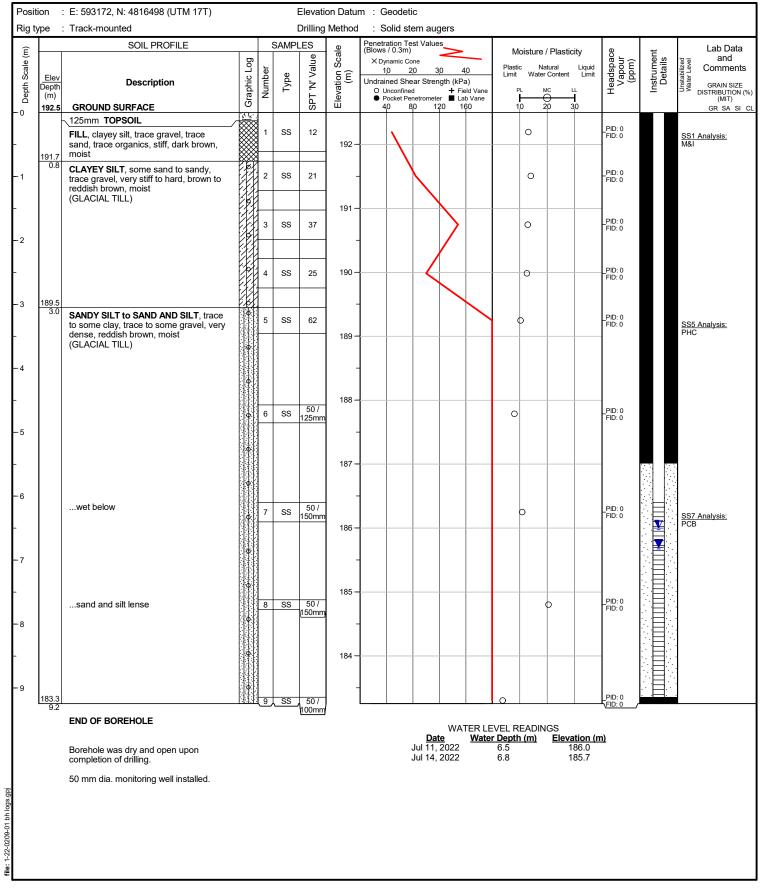
Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 13, 2022 Project : 6360 Regional Road 25 Compiled by : HR

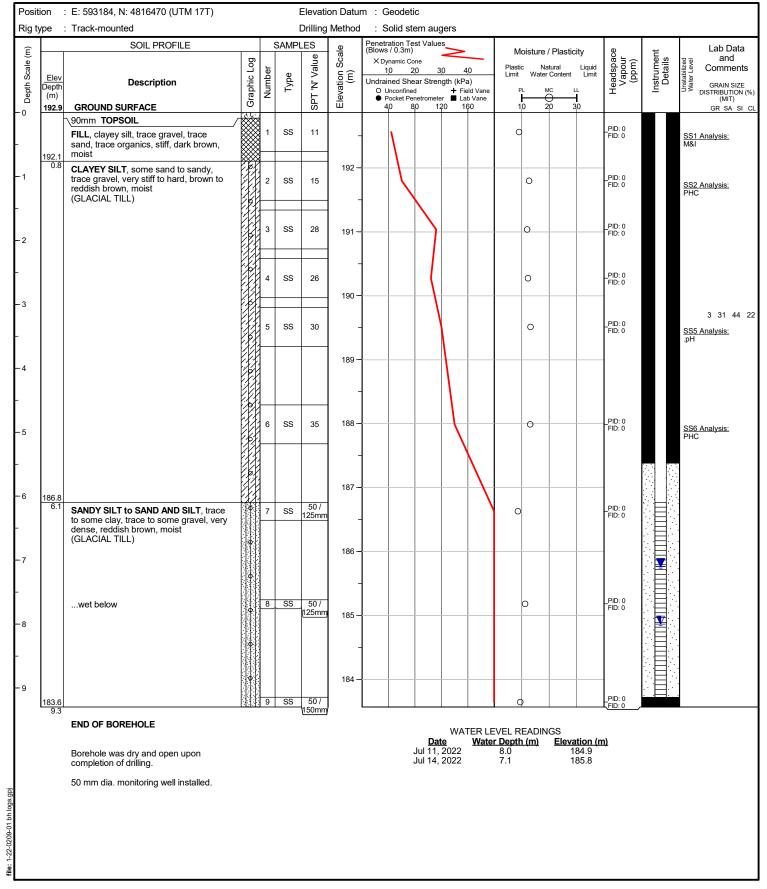
Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 17, 2022 Project : 6360 Regional Road 25 Compiled by : HR

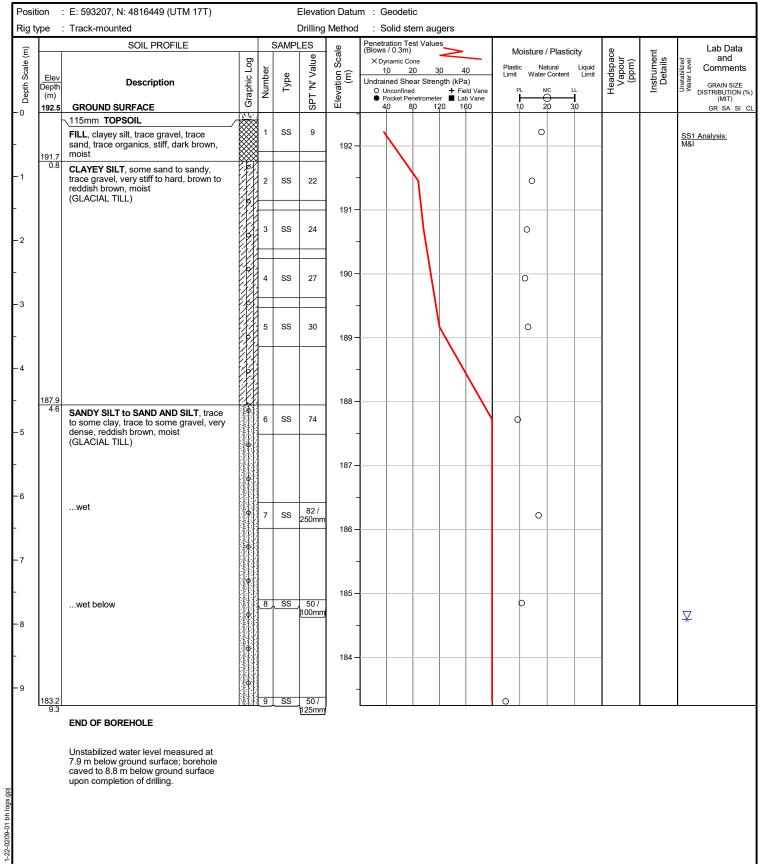
Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 14, 2022 Project : 6360 Regional Road 25 Compiled by : HR

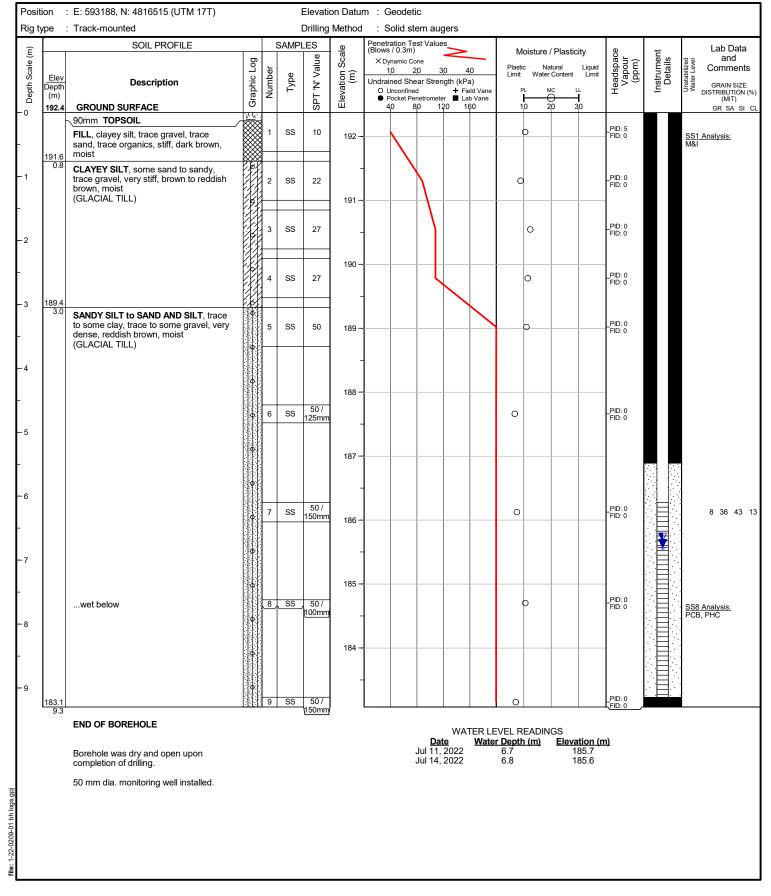
Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 15, 2022 Project : 6360 Regional Road 25 Compiled by : HR

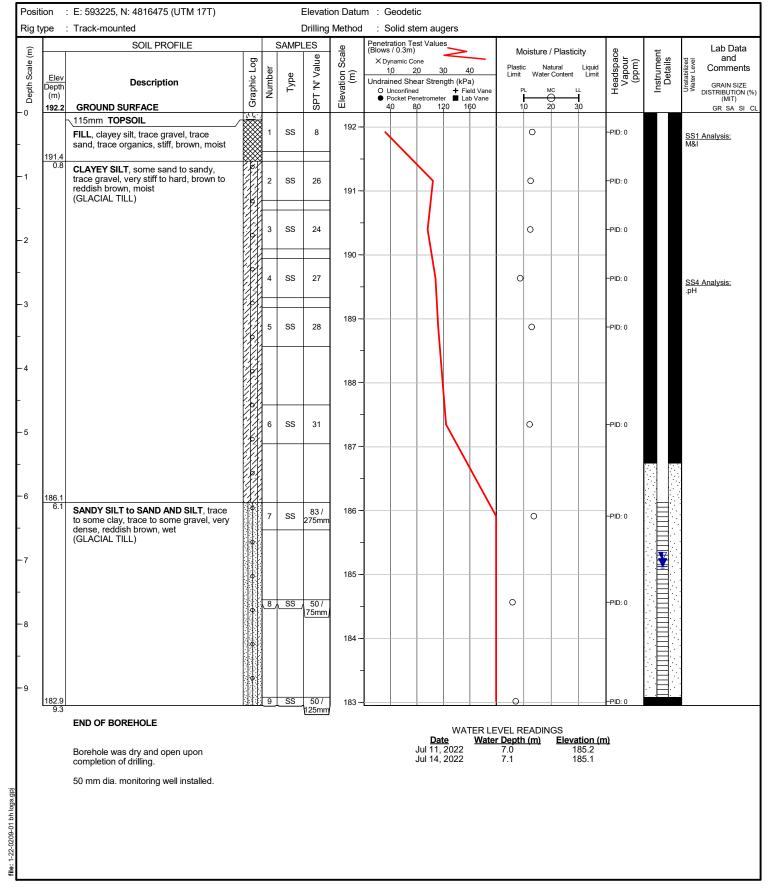
Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 16, 2022 Project : 6360 Regional Road 25 Compiled by : HR

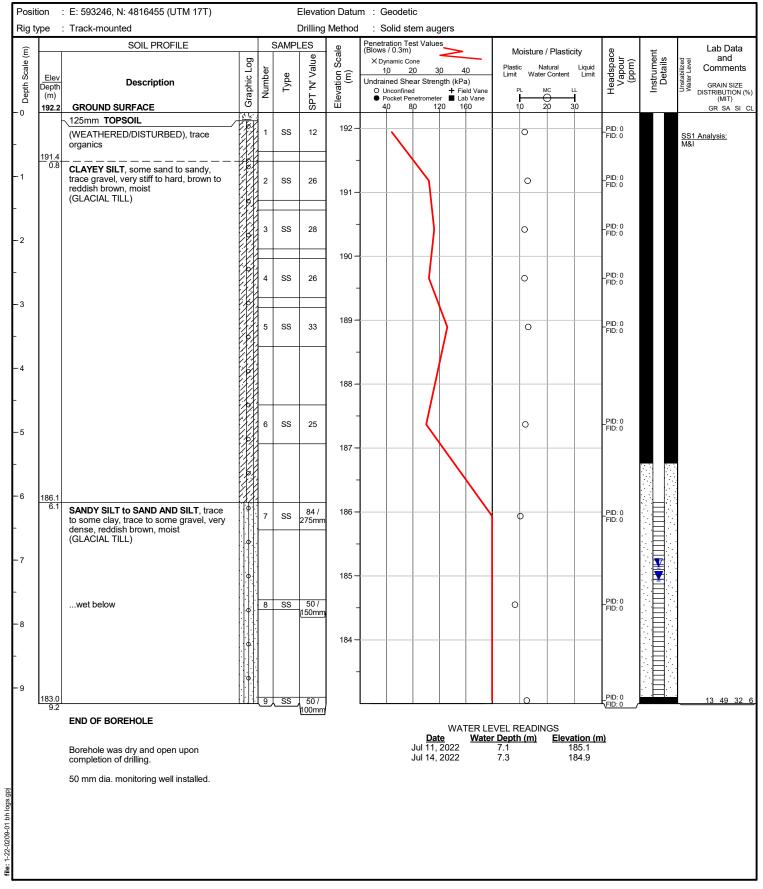
Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 15, 2022 Project : 6360 Regional Road 25 Compiled by : HR

Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 16, 2022 Project : 6360 Regional Road 25 Compiled by : HR

Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH


Date started : June 16, 2022 Project : 6360 Regional Road 25 Compiled by : HR

Project No. : 1-22-0209-01 Client : Thomas Robert Colbeck Originated by : DH

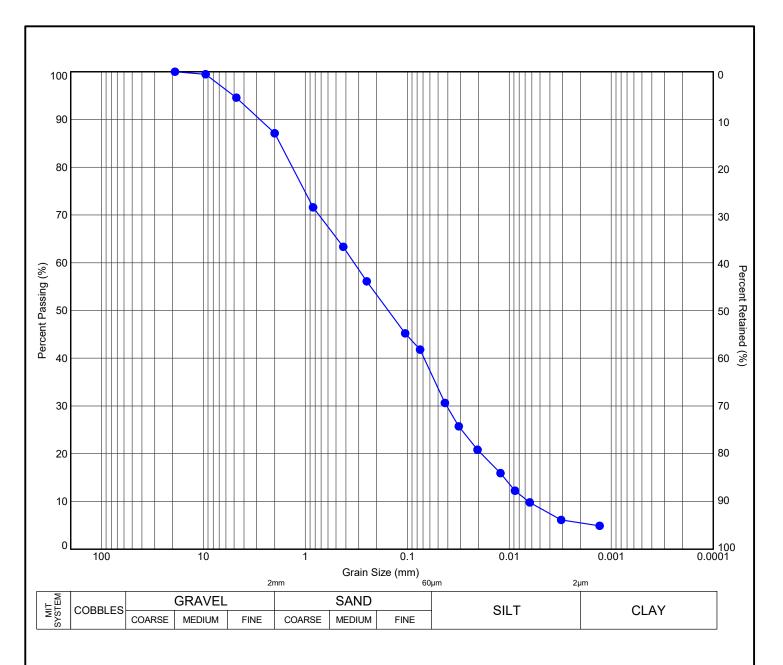

Date started : June 15, 2022 Project : 6360 Regional Road 25 Compiled by : HR

5 DD9 B8 ± '9

TERRAPROBE INC.

MIT	SYSTEM	

	Hole ID	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
•	13	SS7	6.2	186.1	8	36	43	13	

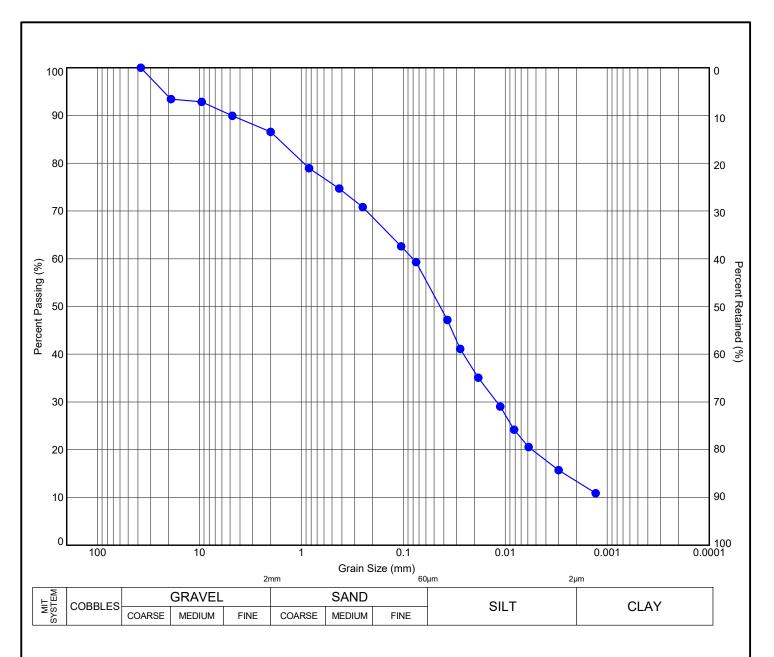


GRAIN SIZE DISTRIBUTION SAND AND SILT, SOME CLAY, TRACE GRAVEL

File No.:

1-22-0209-01

11 Indell Lane, Brampton Ontario L6T 3Y3 (905) 796-2650



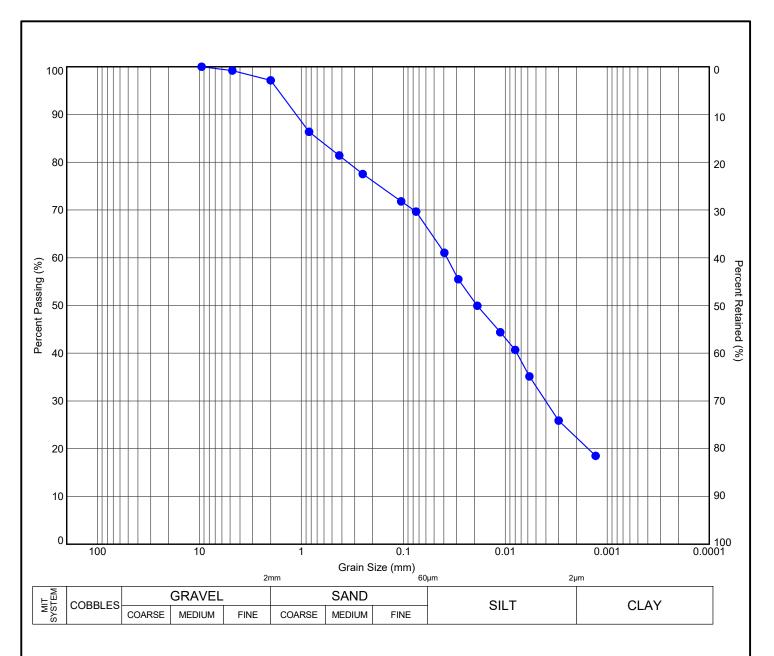
Н	ole ID	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
• 10	6	SS9	9.2	183.1	13	49	32	6	

GRAIN SIZE DISTRIBUTION SILTY SAND, SOME GRAVEL, TRACE CLAY

File No.: 1-22-0209-01

MIT	SYSTEM	

	Hole ID	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
•	1	SS8	7.7	184.4	13	32	42	13	



File No.:

GRAIN SIZE DISTRIBUTION SANDY SILT, SOME GRAVEL, SOME CLAY

3Y3

1-22-0209-01

MIT SYSTEM	

	Hole ID	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
•	10	SS5	3.4	189.5	3	31	44	22	

GRAIN SIZE DISTRIBUTION SANDY SILT, CLAYEY, TRACE GRAVEL

73 File No.:

1-22-0209-01

5 DD9 B8 ± :

TERRAPROBE INC.

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Ali Syed

PROJECT: 1-22-0209-42

AGAT WORK ORDER: 22T921255

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Jul 22, 2022

PAGES (INCLUDING COVER): 13 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

*Notos

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 13

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

ATTENTION TO: Ali Syed
SAMPLED BY:Deepak Masaum

	O. Reg. 153(511) - PCBs (Water)													
DATE RECEIVED: 2022-07-15							DATE REPORTED: 2022-07-22							
		SAMPLE DES	CRIPTION:	BH 09	BH 13	DUP-1								
		SAMPLE TYPE:		Water	Water	Water								
		DATE	SAMPLED:	2022-07-15 15:30	2022-07-15 15:30	2022-07-15 15:30								
Parameter	Unit	G/S	RDL	4100794	4100801	4100802								
Polychlorinated Biphenyls	μg/L	3	0.1	<0.1	<0.1	<0.1								
Surrogate	Unit	Acceptab	le Limits											
Decachlorobiphenyl	%	60-	140	72	72	84								

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4100794-4100802 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Jinkal Jotal

CLIENT NAME: TERRAPROBE INC.

Certificate of Analysis

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

O Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

ATTENTION TO: Ali Syed

SAMPLED BY:Deepak Masaum

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

DATE RECEIVED: 2022-07-15								DATE REPORTED: 2022-07-22
	S	AMPLE DESCI	RIPTION:	BH 09	BH 10	BH 13	DUP-1	
		SAMPL	E TYPE:	Water	Water	Water	Water	
		DATE SA	MPLED:	2022-07-15 15:30	2022-07-15 15:30	2022-07-15 15:30	2022-07-15 15:30	
Parameter	Unit	G/S	RDL	4100794	4100800	4100801	4100802	
F1 (C6 - C10)	μg/L	750	25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	
Sediment				NO	NO	NO	NO	
Surrogate	Unit	Acceptable	Limits					
Toluene-d8	%	50-14)	104	102	102	100	
Terphenyl	% Recovery	60-14)	68	78	77	78	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4100794-4100802 The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.
SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

ATTENTION TO: Ali Syed SAMPLED BY:Deepak Masaum

SAMPLING SITE.0300 Region	iai itu. 25 ivi	ilitori, Ola			SAMPLED BT. Deepak Masaum				
O. Reg. 153(511) - VOCs (Water)									
DATE RECEIVED: 2022-07-15					DATE REPORTED: 2022-07-22				
	•		CRIPTION: PLE TYPE: SAMPLED:	Trip Blank Water					
Parameter	Unit	G/S	RDL	4100809					
Dichlorodifluoromethane	μg/L	590	0.40	<0.40					
Vinyl Chloride	μg/L	0.5	0.17	<0.17					
Bromomethane	μg/L	0.89	0.20	<0.20					
Trichlorofluoromethane	μg/L	150	0.40	<0.40					
Acetone	μg/L	2700	1.0	<1.0					
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30					
Methylene Chloride	μg/L	50	0.30	< 0.30					
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20					
Methyl tert-butyl ether	μg/L	15	0.20	<0.20					
1,1-Dichloroethane	μg/L	5	0.30	< 0.30					
Methyl Ethyl Ketone	μg/L	1800	1.0	<1.0					
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20					
Chloroform	μg/L	2.4	0.20	<0.20					
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20					
1,1,1-Trichloroethane	μg/L	200	0.30	<0.30					
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20					
Benzene	μg/L	5.0	0.20	<0.20					
1,2-Dichloropropane	μg/L	5	0.20	<0.20					
Trichloroethylene	μg/L	1.6	0.20	<0.20					
Bromodichloromethane	μg/L	16	0.20	<0.20					
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0					
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20					
Toluene	μg/L	24	0.20	<0.20					
Dibromochloromethane	μg/L	25	0.10	<0.10					
Ethylene Dibromide	μg/L	0.2	0.10	<0.10					
Tetrachloroethylene	μg/L	1.6	0.20	<0.20					
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10					
Chlorobenzene	μg/L	30	0.10	<0.10					
Ethylbenzene	μg/L	2.4	0.10	<0.10					
m & p-Xylene	μg/L		0.20	<0.20					

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

ATTENTION TO: Ali Syed

SAMPLED BY:Deepak Masaum

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

O. Reg. 153(511) - VOCs (Water)

				DATE REPORTED: 2022-07-22
S	AMPLE DES	CRIPTION:	Trip Blank	
	SAM	PLE TYPE:	Water	
	DATES	SAMPLED:		
Unit	G/S	RDL	4100809	
μg/L	25	0.10	<0.10	
μg/L	5.4	0.10	<0.10	
μg/L	1	0.10	<0.10	
μg/L		0.10	<0.10	
μg/L	59	0.10	<0.10	
μg/L	1	0.10	<0.10	
μg/L	3	0.10	<0.10	
μg/L	0.5	0.30	< 0.30	
μg/L	300	0.20	<0.20	
μg/L	51	0.20	<0.20	
Unit	Acceptab	le Limits		
% Recovery	50-1	40	102	
% Recovery	50-1	40	101	
	Unit µg/L % Recovery	SAMI DATE S Unit G/S μg/L 25 μg/L 5.4 μg/L 1 μg/L 59 μg/L 1 μg/L 3 μg/L 3.00 μg/L 300 μg/L 51 Unit Acceptab	μg/L 25 0.10 μg/L 5.4 0.10 μg/L 1 0.10 μg/L 0.10 μg/L 59 0.10 μg/L 1 0.10 μg/L 3 0.10 μg/L 3.00 0.20 μg/L 51 0.20 Unit Acceptable Limits	SAMPLE TYPE: Water

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of

Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4100809 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

ATTENTION TO: Ali Syed

SAMPLED BY:Deepak Masaum

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.
SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2022-07-15								DATE REPORTED: 2022-07-22
		_	RIPTION: LE TYPE: AMPLED:	BH 09 Water 2022-07-15 15:30	BH 10 Water 2022-07-15 15:30	BH 13 Water 2022-07-15 15:30	DUP-1 Water 2022-07-15 15:30	
Parameter	Unit	G/S	RDL	4100794	4100800	4100801	4100802	
Dichlorodifluoromethane	μg/L	590	0.40	<0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	150	0.40	<0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	2700	1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	< 0.30	<0.30	<0.30	<0.30	
Methylene Chloride	μg/L	50	0.30	< 0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	5	0.30	< 0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	μg/L	1800	1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	200	0.30	< 0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	5.0	0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	16	0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	24	0.20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	30	0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

SAMPLED BY:Deepak Masaum

ATTENTION TO: Ali Syed

			0	. Reg. 153(511) - VOCs	(with PHC)) (Water)	
DATE RECEIVED: 2022-07-15								DATE REPORTED: 2022-07-22
		DATE	PLE TYPE: SAMPLED:	BH 09 Water 2022-07-15 15:30	BH 10 Water 2022-07-15 15:30	BH 13 Water 2022-07-15 15:30	DUP-1 Water 2022-07-15 15:30	
Parameter	Unit	G/S	RDL	4100794	4100800	4100801	4100802	
m & p-Xylene Bromoform	μg/L μg/L	25	0.20 0.10	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	<0.20 <0.10	
Styrene	μg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	59	0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	3	0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	<0.30	
Xylenes (Total)	μg/L	300	0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	% Recovery	50-	140	104	102	102	100	
4-Bromofluorobenzene	% Recovery	50-	140	80	78	77	76	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4100794-4100802 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Jinkal Jotal

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

ATTENTION TO: Ali Syed SAMPLED BY:Deepak Masaum

SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

			Trac	e Or	ganio	cs Ar	nalys	is							
RPT Date: Jul 22, 2022				UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
DADAMETED	5.4.1	Sample	5	D #0		Method Blank	Measured		eptable mits		1 1 10	ptable nits		Lir	eptable mits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PCBs (Water)	•								•		•			•	
Polychlorinated Biphenyls	4110275		< 0.1	< 0.1	NA	< 0.1	101%	50%	140%	100%	50%	140%	82%	50%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	4100712		< 0.40	< 0.40	NA	< 0.40	103%	50%	140%	77%	50%	140%	88%	50%	140%
Vinyl Chloride	4100712		<0.17	<0.17	NA	< 0.17	115%	50%	140%	110%	50%	140%	94%	50%	140%
Bromomethane	4100712		<0.20	< 0.20	NA	< 0.20	109%	50%	140%	102%	50%	140%	90%	50%	140%
Trichlorofluoromethane	4100712		< 0.40	< 0.40	NA	< 0.40	88%	50%	140%	96%	50%	140%	108%	50%	140%
Acetone	4100712		<1.0	<1.0	NA	< 1.0	75%	50%	140%	96%	50%	140%	102%	50%	140%
1,1-Dichloroethylene	4100712		<0.30	<0.30	NA	< 0.30	75%	50%	140%	72%	60%	130%	77%	50%	140%
Methylene Chloride	4100712		< 0.30	< 0.30	NA	< 0.30	78%	50%	140%	73%	60%	130%	85%	50%	140%
trans- 1,2-Dichloroethylene	4100712		<0.20	< 0.20	NA	< 0.20	80%	50%	140%	79%	60%	130%	83%	50%	140%
Methyl tert-butyl ether	4100712		< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	85%	60%	130%	113%	50%	140%
1,1-Dichloroethane	4100712		<0.30	<0.30	NA	< 0.30	80%	50%	140%	79%	60%	130%	86%	50%	140%
Methyl Ethyl Ketone	4100712		<1.0	<1.0	NA	< 1.0	89%	50%	140%	83%	50%	140%	98%	50%	140%
cis- 1,2-Dichloroethylene	4100712		<0.20	< 0.20	NA	< 0.20	105%	50%	140%	86%	60%	130%	95%	50%	140%
Chloroform	4100712		<0.20	<0.20	NA	< 0.20	97%	50%	140%	78%	60%	130%	94%	50%	140%
1,2-Dichloroethane	4100712		<0.20	<0.20	NA	< 0.20	101%	50%	140%	74%	60%	130%	107%	50%	140%
1,1,1-Trichloroethane	4100712		2.74	2.61	4.9%	< 0.30	78%	50%	140%	77%	60%	130%	79%	50%	140%
Carbon Tetrachloride	4100712		<0.20	<0.20	NA	< 0.20	74%	50%	140%	79%	60%	130%	72%	50%	140%
Benzene	4100712		<0.20	< 0.20	NA	< 0.20	85%	50%	140%	91%	60%	130%	113%	50%	140%
1,2-Dichloropropane	4100712		<0.20	< 0.20	NA	< 0.20	74%	50%	140%	77%	60%	130%	103%	50%	140%
Trichloroethylene	4100712		3.91	3.04	25%	< 0.20	87%	50%	140%	79%	60%	130%	107%	50%	140%
Bromodichloromethane	4100712		<0.20	<0.20	NA	< 0.20	71%	50%	140%	80%	60%	130%	104%	50%	140%
Methyl Isobutyl Ketone	4100712		<1.0	<1.0	NA	< 1.0	91%	50%	140%	84%	50%	140%	107%	50%	140%
1,1,2-Trichloroethane	4100712		<0.20	<0.20	NA	< 0.20	109%	50%	140%	83%	60%	130%	104%	50%	140%
Toluene	4100712		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	73%	60%	130%	73%	50%	140%
Dibromochloromethane	4100712		<0.10	<0.10	NA	< 0.10	110%	50%	140%	87%	60%	130%	87%	50%	140%
Ethylene Dibromide	4100712		<0.10	<0.10	NA	< 0.10	111%	50%	140%	83%	60%	130%	102%	50%	140%
Tetrachloroethylene	4100712		9.04	9.07	0.3%	< 0.20	73%	50%	140%	78%	60%	130%	72%	50%	140%
1,1,1,2-Tetrachloroethane	4100712		<0.10	< 0.10	NA	< 0.10	93%	50%	140%	81%	60%	130%	78%	50%	140%
Chlorobenzene	4100712		<0.10	< 0.10	NA	< 0.10	85%	50%	140%	75%	60%	130%	79%	50%	140%
Ethylbenzene	4100712		<0.10	<0.10	NA	< 0.10	77%	50%		78%		130%	77%	50%	140%
m & p-Xylene	4100712		<0.20	<0.20	NA	< 0.20	74%		140%	74%		130%	81%		140%
Bromoform	4100712		<0.10	<0.10	NA	< 0.10	119%	50%	140%	95%	60%	130%	92%	50%	140%
Styrene	4100712		<0.10	<0.10	NA	< 0.10	84%		140%	73%		130%	77%		140%
1,1,2,2-Tetrachloroethane	4100712		<0.10	<0.10	NA	< 0.10	113%		140%	92%		130%	109%	50%	140%
o-Xylene	4100712		<0.10	<0.10	NA	< 0.10	80%		140%	74%		130%	76%	50%	140%
1,3-Dichlorobenzene	4100712		<0.10	<0.10	NA	< 0.10	88%		140%	76%		130%	83%		140%
1,4-Dichlorobenzene	4100712		<0.10	<0.10	NA	< 0.10	90%	50%	140%	76%	60%	130%	84%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42

ATTENTION TO: Ali Syed

SAMPLED BY:Deepak Masaum

SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

	7	Γrace	Org	anics	Ana	ılysis	(Coı	ntin	ued	l)					
RPT Date: Jul 22, 2022				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
		Sample				Method Blank	Measured	Acceptable Measured Limits				eptable nits	_		ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower		Recovery	Lower	1	Recovery	Lower	Upper
1,2-Dichlorobenzene	4100712		<0.10	<0.10	NA	< 0.10	95%	50%	140%	75%	60%	130%	86%	50%	140%
n-Hexane	4100712		<0.20	<0.20	NA	< 0.20	89%	50%	140%	79%	60%	130%	81%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	(with VOC) (Water)													
F1 (C6 - C10)	4100939		<25	<25	NA	< 25	107%	60%	140%	107%	60%	140%	108%	60%	140%
F2 (C10 to C16)	4100541		< 100	< 100	NA	< 100	102%	60%	140%	77%	60%	140%	74%	60%	140%
F3 (C16 to C34)	4100541		< 100	< 100	NA	< 100	86%	60%	140%	70%	60%	140%	72%	60%	140%
F4 (C34 to C50)	4100541		< 100	< 100	NA	< 100	100%	60%	140%	89%	60%	140%	88%	60%	140%
O. Reg. 153(511) - VOCs (with P	HC) (Water)														
Dichlorodifluoromethane	4100939		< 0.40	< 0.40	NA	< 0.40	94%	50%	140%	77%	50%	140%	72%	50%	140%
Vinyl Chloride	4100939		<0.17	< 0.17	NA	< 0.17	104%	50%	140%	88%	50%	140%	81%	50%	140%
Bromomethane	4100939		<0.20	<0.20	NA	< 0.20	93%	50%	140%	73%	50%	140%	103%	50%	140%
Trichlorofluoromethane	4100939		< 0.40	< 0.40	NA	< 0.40	110%	50%	140%	94%	50%	140%	85%	50%	140%
Acetone	4100939		<1.0	<1.0	NA	< 1.0	105%	50%	140%	103%	50%	140%	85%	50%	140%
1,1-Dichloroethylene	4100939		<0.30	<0.30	NA	< 0.30	100%	50%	140%	100%	60%	130%	88%	50%	140%
Methylene Chloride	4100939		< 0.30	< 0.30	NA	< 0.30	109%	50%	140%	111%	60%	130%	108%	50%	140%
trans- 1,2-Dichloroethylene	4100939		<0.20	< 0.20	NA	< 0.20	103%	50%	140%	111%	60%	130%	92%	50%	140%
Methyl tert-butyl ether	4100939		<0.20	< 0.20	NA	< 0.20	108%	50%	140%	106%	60%	130%	97%	50%	140%
1,1-Dichloroethane	4100939		<0.30	<0.30	NA	< 0.30	103%	50%	140%	106%	60%	130%	86%	50%	140%
Methyl Ethyl Ketone	4100939		<1.0	<1.0	NA	< 1.0	84%	50%	140%	109%	50%	140%	88%	50%	140%
cis- 1,2-Dichloroethylene	4100939		<0.20	<0.20	NA	< 0.20	114%	50%	140%	116%	60%	130%	94%	50%	140%
Chloroform	4100939		<0.20	<0.20	NA	< 0.20	107%	50%	140%	115%	60%	130%	89%	50%	140%
1,2-Dichloroethane	4100939		<0.20	<0.20	NA	< 0.20	118%	50%	140%	110%	60%	130%	108%	50%	140%
1,1,1-Trichloroethane	4100939		<0.30	<0.30	NA	< 0.30	96%	50%	140%	95%	60%	130%	83%	50%	140%
Carbon Tetrachloride	4100939		<0.20	<0.20	NA	< 0.20	100%	50%	140%	101%	60%	130%	88%	50%	140%
Benzene	4100939		<0.20	<0.20	NA	< 0.20	109%	50%	140%	114%	60%	130%	93%	50%	140%
1,2-Dichloropropane	4100939		<0.20	<0.20	NA	< 0.20	111%	50%	140%	117%	60%	130%	90%	50%	140%
Trichloroethylene	4100939		<0.20	<0.20	NA	< 0.20	117%	50%	140%	119%	60%	130%	107%	50%	140%
Bromodichloromethane	4100939		<0.20	<0.20	NA	< 0.20	114%	50%	140%	101%	60%	130%	95%	50%	140%
Methyl Isobutyl Ketone	4100939		<1.0	<1.0	NA	< 1.0	109%	50%	140%	109%	50%	140%	97%	50%	140%
1,1,2-Trichloroethane	4100939		< 0.20	< 0.20	NA	< 0.20	115%	50%	140%	104%	60%	130%	105%	50%	140%
Toluene	4100939		<0.20	< 0.20	NA	< 0.20	100%	50%	140%	101%	60%	130%	94%	50%	140%
Dibromochloromethane	4100939		<0.10	<0.10	NA	< 0.10	111%	50%	140%	120%	60%	130%	100%	50%	140%
Ethylene Dibromide	4100939		<0.10	<0.10	NA	< 0.10	108%		140%	120%		130%	96%		140%
Tetrachloroethylene	4100939		<0.20	<0.20	NA	< 0.20	94%	50%	140%	93%	60%	130%	91%	50%	140%
1,1,1,2-Tetrachloroethane	4100939		<0.10	<0.10	NA	< 0.10	95%	50%	140%	93%	60%	130%	89%	50%	140%
Chlorobenzene	4100939		<0.10	<0.10	NA	< 0.10	103%	50%	140%	105%	60%	130%	92%	50%	140%
Ethylbenzene	4100939		<0.10	<0.10	NA	< 0.10	92%	50%	140%	91%	60%	130%	81%	50%	140%
m & p-Xylene	4100939		<0.20	<0.20	NA	< 0.20	99%	50%	140%	100%	60%	130%	86%	50%	140%
Bromoform	4100939		<0.10	<0.10	NA	< 0.10	114%	50%	140%	111%	60%	130%	97%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC. AGAT WORK ORDER: 22T921255

PROJECT: 1-22-0209-42 ATTENTION TO: Ali Syed
SAMPLING SITE:6360 Regional Rd. 25 Milton, ON SAMPLED BY:Deepak Masaum

		7			оор										
	Trace Organics Anal														
RPT Date: Jul 22, 2022			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	Lie	ptable nits
		Ia	·	·			Value	Lower	Upper		Lower	Upper		Lower	Upper
Styrene	4100939		<0.10	<0.10	NA	< 0.10	89%	50%	140%	90%	60%	130%	75%	50%	140%
1,1,2,2-Tetrachloroethane	4100939		<0.10	<0.10	NA	< 0.10	109%	50%	140%	113%	60%	130%	102%	50%	140%
o-Xylene	4100939		<0.10	<0.10	NA	< 0.10	103%	50%	140%	105%	60%	130%	89%	50%	140%
1,3-Dichlorobenzene	4100939		<0.10	<0.10	NA	< 0.10	114%	50%	140%	115%	60%	130%	92%	50%	140%
1,4-Dichlorobenzene	4100939		<0.10	<0.10	NA	< 0.10	112%	50%	140%	114%	60%	130%	91%	50%	140%
1,2-Dichlorobenzene	4100939		<0.10	<0.10	NA	< 0.10	113%	50%	140%	113%	60%	130%	89%	50%	140%
n-Hexane	4100939		< 0.20	< 0.20	NA	< 0.20	103%	50%	140%	83%	60%	130%	108%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-22-0209-42 SAMPLING SITE:6360 Regional Rd. 25 Milton, ON ATTENTION TO: Ali Syed
SAMPLED BY:Deepak Masaum

AGAT WORK ORDER: 22T921255

PARAMETER AGAT S.O.P LITERATURE REFERENCE **ANALYTICAL TECHNIQUE Trace Organics Analysis** modified from EPA SW-846 3510 & Polychlorinated Biphenyls ORG-91-5112 GC/ECD 8082A modified from EPA SW-846 3510 & Decachlorobiphenyl ORG-91-5112 GC/ECD 8082A F1 (C6 - C10) VOL-91-5010 modified from MOE PHC-E3421 (P&T)GC/FID F1 (C6 to C10) minus BTEX VOL-91-5010 modified from MOE PHC-E3421 (P&T)GC/FID modified from EPA 5030B & EPA Toluene-d8 VOL-91-5001 (P&T)GC/MS 8260D F2 (C10 to C16) VOL-91-5010 modified from MOE PHC-E3421 GC/FID GC/FID F3 (C16 to C34) VOL-91-5010 modified from MOE PHC-E3421 F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 **BALANCE** Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Sediment modified from EPA 5030B & EPA Dichlorodifluoromethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Vinyl Chloride (P&T)GC/MS VOL-91-5001 8260D modified from EPA 5030B & EPA (P&T)GC/MS Bromomethane VOL-91-5001 8260D modified from EPA 5030B & EPA Trichlorofluoromethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Acetone VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,1-Dichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA (P&T)GC/MS Methylene Chloride VOL-91-5001 8260D modified from EPA 5030B & EPA trans- 1,2-Dichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Methyl tert-butyl ether VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,1-Dichloroethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Methyl Ethyl Ketone VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA VOL-91-5001 (P&T)GC/MS cis- 1,2-Dichloroethylene 8260D modified from EPA 5030B & EPA Chloroform VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,2-Dichloroethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1.1.1-Trichloroethane VOI -91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Carbon Tetrachloride VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Benzene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,2-Dichloropropane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA VOL-91-5001 Trichloroethylene (P&T)GC/MS 8260D modified from EPA 5030B & EPA VOL-91-5001 (P&T)GC/MS Bromodichloromethane 8260D

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-22-0209-42

SAMPLING SITE:6360 Regional Rd. 25 Milton, ON

AGAT WORK ORDER: 22T921255

ATTENTION TO: Ali Syed

SAMPLED BY:Deepak Masaum

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

AGAT Laboratories

Chain of Custody Reco	ord If this is a	Drinking Water sa	mple, please u	se Drinking Water C	haln of Custody Form (po	lable water	consum	ed by bun	ans.	-	•	8		antity: iperatui		100	7	8	7 :	7.9
Report Information: Contact Ali Sused II Indell Lane Bramp L6T 3Y3 Phone: Reports to be sent to I. Email: Project Information: Project: Site Location Sampled By: Description: Contact Ali Sused II Indell Lane Bramp Project Sent to Sused	plon, Ontario Fax: aprobe contrafni	a oke ca		Regulatory I (Passa sheet at applicul Regulation 15: Table Place sheet at applicul Indicate Indicate Soil Texture Cheek of Fine Is this subn	Requirements: 3/04	R406	Sev	Region Water ectives (er Guidel kte of A	□ Stor Quality PWQO)	on sis		Turn Regu Rush	arou ular T TAT OR	(Rush Sur USINESS Date R Please Is exclu	ime (pst Analysi charges A equired provide usive of	TAT) cs) pply) 2 B Day (Rush prior if	Requisiness is Surcha and an	o 7 Bus s arges A tion for and state	i: siness D	t Business y): T Iidays
nvoice Information: company: contact: ddfress: Inossi@terraprobe.ca	FO: per is not proving elect will	Still To Samo: You	ly ο ε	Sample Matri B Srota GW Ground War O Oil P Paint S Soil SD Sediment SW Surface Wa	ier	Field Filtered - Metals, Hg, CrVI, DOC	inorganics	Mctels - □ CrVI, □ Hg, □ HWSB and BTEX, F1-F4 PHCs	46 if required □ Yes □ No	s 🗆 Aroclor		osal Cha	s SPLP Rainwater als □vocs □ svc	s Characterization Package Metals, BTEX, F1-F4	SAR					arandous or Han Contembation (Y Pt
Sample Identification	Date Sampled	Telling in the	Contamers M		Comments/ ecial Instructions	± € 1974	Metals &	Mctals - □ Cr	Analyze F PAHS	Total PCBs	-	tandfill Dispo	SPLP: Div	Excess Soil pH, ICPMS	Salt EC/					Potentially H
BH 10 BH 13 Rup-1 Trip Plank	July 15 July 15 July 15	3:30 D 3:30 D 3:30 D	7 8	144 144 144) X X		X	X X X X									
The region S. Frettine and how		AM PM AM PM AM PM AM PM															123) , 11 <u>11</u>	15	4102
Deepak Musaem The French and Sept. The Residual Sept. It is the send Sept.		July 15	4:30		of Eq. (From Same and Same)	25	Pa			Date Date		ellow Cop	Time		2	(4	'age	ra in	ot	4:0

Laboratory Use Only

Work Order #: 22792[255

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3

(905) 796-2650

ATTENTION TO: Syed Ali

PROJECT: 1-22-0209-42

AGAT WORK ORDER: 22T912757

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jul 04, 2022

PAGES (INCLUDING COVER): 14 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 14

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: Milton, ON

Certificate of Analysis

AGAT WORK ORDER: 22T912757

PROJECT: 1-22-0209-42

ATTENTION TO: Syed Ali
SAMPLED BY:Dhruvish Halavi

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-06-24								Ι	DATE REPORTE	ED: 2022-07-04	
	S	_	CRIPTION: PLE TYPE: SAMPLED:	BH1-SS1 Soil 2022-06-14	BH3-SS1 Soil 2022-06-17	BH6-SS1 Soil 2022-06-14	BH9-SS1 Soil 2022-06-15	BH10-SS1 Soil 2022-06-16	BH11-SS1 Soil 2022-06-15	BH13-SS1 Soil 2022-06-16	BH15-SS1 Soil 2022-06-16
Parameter	Unit	G/S	RDL	4020309	4020311	4020313	4020315	4020318	4020322	4020323	4020325
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	8	8	7	7	7	6	7	9
Barium	μg/g	390	2.0	193	148	197	134	99.0	103	135	185
Beryllium	μg/g	4	0.4	8.0	1.1	1.2	1.0	0.8	0.8	1.1	1.6
Boron	μg/g	120	5	17	21	13	13	11	9	14	18
Boron (Hot Water Soluble)	μg/g	1.5	0.10	<0.10	0.15	0.34	<0.10	0.22	0.10	0.12	<0.10
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	5	27	33	39	30	27	27	39	41
Cobalt	μg/g	22	0.5	15.4	16.7	16.4	16.3	13.5	13.8	17.3	17.7
Copper	μg/g	140	1.0	35.2	30.0	23.8	33.2	30.2	27.8	28.1	36.4
Lead	μg/g	120	1	12	13	17	13	13	12	14	16
Molybdenum	μg/g	6.9	0.5	<0.5	0.7	<0.5	0.5	0.5	<0.5	<0.5	0.5
Nickel	μg/g	100	1	33	37	33	34	28	31	30	36
Selenium	μg/g	2.4	0.8	<0.8	<0.8	0.8	8.0	1.0	<0.8	0.9	1.0
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	23	0.50	0.71	0.65	0.77	0.64	0.59	0.66	0.74	0.85
Vanadium	μg/g	86	0.4	37.6	46.3	55.4	41.1	39.4	37.3	52.4	57.2
Zinc	μg/g	340	5	69	76	92	80	75	67	87	90
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.233	0.185	0.163	0.210	0.182	0.260	0.263	0.235
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	1.90	0.351	0.343	0.712	0.137	1.59	1.43	0.654
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	6.88	6.68	6.88	7.36	7.26	6.80	6.82	7.33

AGAT WORK ORDER: 22T912757

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC. SAMPLING SITE: Milton, ON

ATTENTION TO: Syed Ali SAMPLED BY:Dhruvish Halavi

O. Reg. 153(511) - Metals & Inorganics (Soi	O. Re	q. 153	(511) -	Metals	&	Inorganics	(Soil)	•
---	-------	--------	---------	--------	---	------------	--------	---

DATE RECEIVED: 2022-06-24						DATE REPORTED: 2022-07-04
		SAMPLE DES	CRIPTION:	BH16-SS1	Dup1	
		SAMI	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2022-06-15	2022-06-15	
Parameter	Unit	G/S	RDL	4020327	4020328	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	7	7	
Barium	μg/g	390	2.0	182	149	
Beryllium	μg/g	4	0.4	1.4	1.1	
Boron	μg/g	120	5	18	14	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	<0.10	0.12	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	
Chromium	μg/g	160	5	46	34	
Cobalt	μg/g	22	0.5	16.1	14.1	
Copper	μg/g	140	1.0	26.4	29.8	
Lead	μg/g	120	1	16	14	
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	
Nickel	μg/g	100	1	37	32	
Selenium	μg/g	2.4	0.8	8.0	1.0	
Silver	μg/g	20	0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	
Uranium	μg/g	23	0.50	0.87	0.75	
Vanadium	μg/g	86	0.4	61.4	49.4	
Zinc	μg/g	340	5	89	85	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	<0.040	< 0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.098	0.189	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.388	0.539	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	6.66	7.29	

AGAT WORK ORDER: 22T912757

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: Milton, ON

ATTENTION TO: Syed Ali
SAMPLED BY:Dhruvish Halavi

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-06-24 DATE REPORTED: 2022-07-04

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4020309-4020328 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

manjot Bheld AMANJOT BHELD CHEMIST JOHE TO SHEET JOHE THE TO SHEET JOHE THE SHEET JOHE TO SHEET JOHE TO SHEET JOHE TO SHEET JOHE THE SHEET

AGAT WORK ORDER: 22T912757

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: Milton, ON

ATTENTION TO: Syed Ali SAMPLED BY:Dhruvish Halavi

					pH in S	Soil			
DATE RECEIVED: 2022-06-24									DATE REPORTED: 2022-07-04
		SAMPLE DESC	CRIPTION:	BH3-SS5	BH6-SS6	BH10-SS5	BH15-SS4	Dup3	
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2022-06-17	2022-06-14	2022-06-16	2022-06-16	2022-06-16	
Parameter	Unit	G/S	RDL	4020312	4020314	4020321	4020326	4020330	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.19	7.42	7.35	7.47	7.34	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4020312-4020330 pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio (2 parts extraction fluid: 1 part soil).

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhelly Amanjor Bhelly Shannor Bhelly Shanno

AGAT WORK ORDER: 22T912757

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Milton, ON

CLIENT NAME: TERRAPROBE INC.

ATTENTION TO: Syed Ali SAMPLED BY:Dhruvish Halavi

O.	Rea.	153(511)	- PCBs	(Soil)
----	------	------	------	--------	--------

					• , ,	•	,
DATE RECEIVED: 2022-06-24							DATE REPORTED: 2022-07-04
		SAMPLE DESC	CRIPTION:	BH9-SS7	BH13-SS8	Dup4	
		SAMF	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2022-06-15	2022-06-16	2022-06-16	
Parameter	Unit	G/S	RDL	4020317	4020324	4020331	
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	<0.1	<0.1	
Moisture Content	%		0.1	12.0	12.1	11.6	
Surrogate	Unit	Acceptabl	le Limits				
Decachlorobiphenyl	%	50-1	40	120	104	108	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4020317-4020331 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 22T912757

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC. SAMPLING SITE:Milton, ON

ATTENTION TO: Syed Ali SAMPLED BY:Dhruvish Halavi

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DESCRIPTION: SAMPLE TYPE: ATE SAMPLED: S RDL 1 0.02 0.05	BH9-SS5 Soil 2022-06-15 4020316 <0.02	BH10-SS2 Soil 2022-06-16 4020319	BH10-SS6 Soil 2022-06-16	BH13-SS8 Soil 2022-06-16	Dup2 Soil 2022-06-16	
S RDL 1 0.02	4020316			2022-06-16	2022-06-16	
	<0.02		4020320	4020324	4020329	
0.05		<0.02	<0.02	<0.02	<0.02	
	< 0.05	< 0.05	<0.05	< 0.05	0.06	
0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
5	<5	<5	<5	<5	<5	
5	<5	<5	<5	<5	<5	
10	<10	<10	<10	<10	<10	
50	<50	<50	<50	<50	<50	
0 50	<50	<50	<50	<50	<50	
0 50	NA	NA	NA	NA	NA	
0.1	10.8	11.9	11.8	12.1	11.7	
ptable Limits						
60-140	97	111	112	106	109	
	77					
0	0.05 5 5 10 0 50 0 50 0 50 0.1 ptable Limits	0.05 <0.05 5 <5 5 <5 10 <10 0 50 <50 0 50 <50 0 50 NA 0.1 10.8 ptable Limits	0.05 <0.05	0.05 <0.05	0.05 <0.05	0.05 <0.05

AGAT WORK ORDER: 22T912757

PROJECT: 1-22-0209-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: Milton, ON

ATTENTION TO: Syed Ali
SAMPLED BY:Dhruvish Halavi

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2022-06-24 DATE REPORTED: 2022-07-04

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4020316-4020329 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprikolof

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-22-0209-42 SAMPLING SITE:Milton, ON AGAT WORK ORDER: 22T912757

ATTENTION TO: Syed Ali SAMPLED BY: Dhruvish Halavi

Soil Analysis REFERENCE MATERIAL METHOD BLANK SPIKE **DUPLICATE** RPT Date: Jul 04, 2022 MATRIX SPIKE Acceptable Method Acceptable Acceptable Massurad Sample Blank Limits Limits Limits Dup #1 Dup #2 **PARAMETER** Batch RPD Recovery Recovery Value Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - Metals & Inorganics (Soil) 130% Antimony 4020442 99% 81% <0.8 < 0.8 NA < 0.8 70% 130% 109% 80% 120% 70% 130% Arsenic 4020442 3 2 NA < 1 119% 70% 130% 119% 80% 120% 127% 70% Barium 4020442 69.8 61.5 12.6% < 2.0 109% 70% 130% 105% 80% 120% 96% 70% 130% Beryllium 4020442 0.5 0.5 NA < 0.4 105% 70% 130% 97% 80% 120% 110% 70% 130% 4020442 9 NA 86% 70% 130% 100% 80% 120% 115% 70% 130% Boron 10 < 5 Boron (Hot Water Soluble) 4018578 4.3% 95% 60% 140% 106% 130% 102% 140% 1.14 1.19 < 0.10 70% 60% Cadmium 4020442 <0.5 <0.5 NA < 0.5 108% 70% 130% 104% 80% 120% 105% 70% 130% Chromium 4020442 20 17 NA < 5 110% 70% 130% 106% 80% 120% 99% 70% 130% 4020442 8.4 7.1 16.8% < 0.5 114% 70% 130% 104% 80% 120% 106% 70% 130% Cobalt 4020442 105% 14.6 12.5 15.5% 100% 70% 130% 80% 120% 95% 70% 130% Copper < 1.0 4020442 7 108% 103% 130% Lead 6 15.4% < 1 70% 130% 80% 120% 96% 70% 4020442 105% 70% 100% 109% 130% Molybdenum < 0.5 < 0.5 NA < 0.5130% 80% 120% 70% Nickel 4020442 19 15 23.5% < 1 115% 70% 130% 104% 80% 120% 101% 70% 130% Selenium 4020442 <0.8 < 0.8 NA < 0.8 118% 70% 130% 108% 80% 120% 100% 70% 130% Silver 4020442 <0.5 <0.5 NA < 0.5 98% 70% 130% 104% 80% 120% 99% 70% 130% Thallium 4020442 <0.5 <0.5 NA < 0.5 113% 70% 130% 109% 80% 120% 104% 70% 130% Uranium 4020442 0.63 0.56 NA < 0.50 117% 70% 130% 112% 80% 120% 112% 70% 130% Vanadium 4020442 33.0 26.7 21.1% < 0.4 120% 70% 130% 102% 80% 120% 99% 70% 130% 4020442 35 29 18.8% < 5 108% 70% 130% 108% 80% 120% 104% 70% 130% 4020565 < 0.2 <0.2 NA < 0.2 97% 70% 130% 90% 80% 120% 105% 70% 130% Chromium, Hexavalent Cyanide, WAD 4020506 < 0.040 95% 70% 105% 107% 130% < 0.040 NA < 0.040 130% 80% 120% 70% 4020442 70% 130% 112% 80% 120% 102% 70% 130% Mercury < 0.10 < 0.10 NA < 0.10116% Electrical Conductivity (2:1) 4018578 0.255 80% 0.2492.4% < 0.005104% 120% NΑ NA NA Sodium Adsorption Ratio (2:1) 4020558 1.44 1.45 0.7% N/A NA NA (Calc.)

Comments: NA signifies Not Applicable.

pH, 2:1 CaCl2 Extraction

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

6.68

6.78

1.5%

NA

100%

80% 120%

4020311 4020311

Duplicate NA: results are under 5X the RDL and will not be calculated.

Amanjot Bhells Amanor BHELLS

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-22-0209-42 SAMPLING SITE:Milton, ON AGAT WORK ORDER: 22T912757

ATTENTION TO: Syed Ali

SAMPLED BY:Dhruvish Halavi

·										1.Dilla						
			Trace Organics Analysis													
RPT Date: Jul 04, 2022			D	UPLICATI	E		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	IKE		
PARAMETER	Batch	Sample			Measured		ptable nits	Recovery		ptable nits	Recovery	1 1 1 1 1	eptable mits			
		ld		.			value	Lower	Upper	7	Lower	Upper		Lower	Upper	
O. Reg. 153(511) - PHCs F1 - F4 ((Soil)															
Benzene	4020329	4020329	< 0.02	< 0.02	NA	< 0.02	93%	60%	140%	86%	60%	140%	96%	60%	140%	
Toluene	4020329	4020329	0.06	< 0.05	NA	< 0.05	93%	60%	140%	84%	60%	140%	103%	60%	140%	
Ethylbenzene	4020329	4020329	< 0.05	< 0.05	NA	< 0.05	90%	60%	140%	82%	60%	140%	106%	60%	140%	
n & p-Xylene	4020329	4020329	< 0.05	< 0.05	NA	< 0.05	88%	60%	140%	81%	60%	140%	101%	60%	140%	
o-Xylene	4020329	4020329	<0.05	<0.05	NA	< 0.05	85%	60%	140%	82%	60%	140%	104%	60%	140%	
=1 (C6 - C10)	4020329	4020329	<5	<5	NA	< 5	83%	60%	140%	115%	60%	140%	95%	60%	140%	
F2 (C10 to C16)	4020320	4020320	< 10	< 10	NA	< 10	112%	60%	140%	85%	60%	140%	68%	60%	140%	
F3 (C16 to C34)	4020320	4020320	< 50	< 50	NA	< 50	135%	60%	140%	89%	60%	140%	62%	60%	140%	
F4 (C34 to C50)	4020320	4020320	< 50	< 50	NA	< 50	120%	60%	140%	78%	60%	140%	65%	60%	140%	
D. Reg. 153(511) - PCBs (Soil)																
Polychlorinated Biphenyls	4019736		< 0.1	< 0.1	NA	< 0.1	105%	50%	140%	104%	50%	140%	98%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPoprikolof

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-22-0209-42 SAMPLING SITE:Milton, ON AGAT WORK ORDER: 22T912757
ATTENTION TO: Syed Ali
SAMPLED BY:Dhruvish Halavi

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

SAMPLING SITE: Milton, ON

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 22T912757
PROJECT: 1-22-0209-42

ATTENTION TO: Syed Ali

SAMPLED BY:Dhruvish Halavi

OAMI LING OF L.MINOH, ON		OAIM LED DI DINAVION HAIAVI								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Trace Organics Analysis										
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD							
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD							
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE							
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID							
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID							
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS							
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE							
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							

5835 Coopers Avenue Mississauga, Ontario LAZ 1Y2 Ph: 905.712.5100 Fax: 905.712,5122

Laboratory Use Only Work Order #: 22T912757

Chain of Custody Reco	If this is a Drinking Water sam	ile, please use Drin	king Water Chain of Custody Form (potable	water o	consum	ed by h	umans)			Arı	'Ival ler	nperatu	ires:	100	4	le	-	(-)	
Report Information: Testaplobe Company: Contact: Swed At	li Inc.	(Please	gulatory Requirements: e check all applicable boves) / legulation 153/04	ا ۱	Sev	wor I le	0			11	stody S otes:	eal Inta	ict:	UY:	es OS		No		N/A
	Idell Lare, Brampton		2	6 [□s	torm		Tui	rnaro	und 1	Time	(TAT) Re				
Phone: 905-796-26 Reports to be sent to: 405-796-26	~ §		Table Table Indicate One Ind	_ [er Qual s (PWQ					(Rush Su	rcharges	a Apply)		usiness	Days		
	rigio de la		Texture (Check One) Coarse		Oth	er					□ Da	•			Busino Bays		⊔ Da		ness
2. Email:]Fine	0=		indicat					OF	R Date F	Require	ed (Ru	sh Surc	harges	May Ap	ply):	
Project: 1-22-0. Site Location: Miltor Sampled By: Dh cuvis	209-42 NON Halari	Re	s this submission for a cord of Site Condition? Yes	Cer		ite o	eline f Ana	lysis		 		T is exc	lusive	of wee	kends	and sta			
AGAT Quote #:	PO: r is not provided, client will be billed full price for analys	San	mple Matrix Legend	л, Doc	0.	Reg 1	53 - 8 - 0			0. Reg 558		eg 406							(N/X) uc
Invoice Information: Company: Contact: Address: Email: Lorena Lorena Lrossi@	Bill To Same: Yes I traprobe his. I Rossi Lell Lane, Brampton terraprobe a	No D GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metais, Hg, CrVI, DOC	Metals & Inorganics	Metals - □ CrVI, □ Hg, □ HWSB	BTEX, F1-F4 PHCs Analyze F4G if required ☐ Yes ☐			Landfill Disposal Characterization TCLP:	Rainwa 70Cs 🔲	teri STE	<u>چ</u>						Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Sampled Sampled Cor	# of Sample tainers Matrix	Comments/ Special Instructions	Y/N	_	Metal	Analyz	PAHS	200	Landfill	Excess SPLP:	Excess Soik pH, ICPMS I	Salt -	Hd					Potentia
BH1-SS1	07/14/22 PM	1 5			X			_											
BH3-SSI	07/17/22 AM	2 1			X			4	4							4-1	_		
BH3-555	07/17/22 AM 07/14/22 AM	i S		-	_	4	-	-	+	-				メ	-	-	_		
BH6-SS1 BH6-SS6					×	H	-	-	+	-	-				+	+	-		-
BH9-556		1 5			X			-	+	+	-			×		+	-	+-	\vdash
BH 9-555	07/15/22 AM 07/15/22 AM	2 5		-	^	\vdash	×	+	+		1	-		-		+	-	+	-
BH9~557	07/15/22 PM	1 5		-			^	7		+	†	ļ			-	+	-	+	
BH10-551	07/16/22 AM	1 5			×			- '											
BH10-552	07/16/22 AM	2 5		\neg	<u> </u>		X	+	+	1					+	221	14112	4	4:0
BH10-556		2 5		-		+	×	+			1				+		-	+	
Samples Relinquished By (Print Name and Sign): Syec Au Samples Retinquished By (Print Name and Sign):	Dote 07/24/22	Time 4:05 pm	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	R	2c	07		E.	ne		Time				Page	1	of	2	
Samples Relinquished By (Print Name and Sign)	D-H-	Time	Samples Received By (Print Name and Sign):					77	270		Timen	_	_						

5835 Coopers Avenue Mississauga, Ontario LdZ 1Y2. Ph: 905.712.5100 Fax: 905.712.5122 websarth.agattabs.com

Laboratory Use	Only		
Work Order #:			
Cooler Quantity:	-		
Arrival Temperatures:	-	100 4	DA
Custody Seal Intact; Notes:	□Yes	□No	ON

hain of Custody Reco	rd If this is a D	Orlnking Water s	sample, plea	se use Drini	king Water Chain of Custody Form (pote	able water	consum	ed by humar	ıs)	•			anuty: nperatu	res:	-	S	20	#	NC	7
Report Information: Temporo Company: Contact: Syed A Address:	be Inc			(Please	Culatory Requirements: Check all applicable boves) Equilation 153/04 Excess Soils F	3400	□sa	wer Use			Cus	-	eal Inta	ict:	□Ye	š	□No	>		/A
======================================		Brampton	1		indicate One Indic			Sanitary [] Storm			naro ular			-		uired:			
Phone: 905-796-26 Reports to be sent to:	50 Fax:				Agriculture	58		v, Water Quectives (PV			Rus		(Rush Su	rcharge	as Apply)					
1, Email: SWIFE TE	raprobe G	2		- Q	coarse CCME		Oth	ier				□ Da	, -			Busines ays h Surch:	arges M		xt Busin y ply):	ess
Project Information: Project: 1 - 22 - 07 Site Location: Milton Sampled By: Dhuwis h	209-42 , ON.			Red	this submission for a cord of Site Condition? Yes No	Ce		Guidelinate of An			Fo	*TA	T is exc	lusive	of week	kends ar	ntion for indexended in the state of the sta	tory ho	olidays	
AGAT Quote #: Please note: If quotation number	PO:er is not provided, client will b				iple Matrix Legend	M, Doc	0	Reg 153	2		O. Reg 558 9804 □ d		eg 406							Concentration (Y/N)
Invoice Information: Company: Contact: Address: Illustration Lower Address: Illustration Lower Address: Illustration Lower Address: Lower Address: Illustration Lower Address: Lower Addre	probe he. d Rossi lell Lane, i lell lerrapre	Brampton Brampton	s 🗹 No 🗆	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	s & Inorganics	Metals - □ CrVI, □ Hg, □ HWSB BTEX, F1-F4 PHCs	- II		osal Characterization □vocs □ABNs □B(a)	s SPLP Rainwater L tals □vocs □svocs	Soils Characterization Package PMS Metals, BTEX, F1-F4	Salt - EC/SAR						Potentially Hazardous or High Concentr
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metal BTEX,	PAHS	Noc No	Landfill Disp TCLP: □M&I	Excess SPLP:	Excess Soil pH, ICPMS	Salt -	E					Potenti
BH10-555	07/16/22	AM PM		S											X					
BH11-551	07/15/22	AM PM		5			1		\perp	_								_		_
BH13-551	07/16/22	AM PM		5			X													
BH13-558	07/16/22	AM PM		5				1	7								\perp			
BH15 - SSI	07/16/22	AM PM		:5			X		\perp									_		
BH15-554	07116/22	AM PM		S											X					
B416-SSI	07/15/22	AM PM		5			*													
DUPI	07/15/22	AM PM		5			X													
DUP2	07/16/22	AM PM	2	5				×								+		-	+	
DUP 3	07/16/22	AM PM	7	\$										П	X		199	MIN	74	45
DVP4	07/16/22	AM PM	i	Š)	4										
amples Relinquilished By (Print Name and Sign): Syect All amples Relinquished By (Print Name and Sign):	Sato	07/24/	22 Time	05 pm	Samples Received By (Print Name and Sign): Somnles Received By (Print Name and Sign)	-	S	>	Da			Time					2.	- ,	7.	
amples Helidaulshed By (Pont Name and Sidnit:		Corte	Time		Samples Received By Print Name and Signit				Dis	te		Time			Nº:	rage_	See	л <u> </u>		-
		1	-		1				1			1			1					